Платоновы тела – очень важный объект для изучения, как с точки зрения сакральной математики, так и с точки зрения естественных наук. Платоновы тела проявляются повсюду, начиная от вирусов, многие из которых имеют икосаэдрическую форму и заканчивая сложными макроструктурами, такими, например, как Солнечная система.
Единство мер – единство мира
Секунда, метр, килограмм… Мы так привыкли к этим единицам системы СИ, что кажется странным вопрос: как можно измерять по-другому? Впрочем, еще есть пуды, аршины, сажени… Но кто ими пользуется? Или в далекой Англии есть футы и фунты – так это, скажете вы, пережитки прошлого. Как и баррели, которые сейчас ассоциируются только с нефтью.
Удобно, когда система мер единая: все цифры и расчеты сразу всем понятны. Но почему именно килограмм, метр и секунда?
Физики ответят, что через комбинацию этих мер массы, пространства и времени можно выразить все остальные кинематические физические величины, такие как сила, энергия, частота и так далее. Даже для описания многих свойств света достаточно величин с размерностями длины или времени. Большое разнообразие окружающих нас явлений современная естественная наука смогла свести к комбинации не такого уж большого количества разнородных принципов, или начал, Природы. Но эти три: масса, размер, длительность – самые универсальные. Они совершенно различны, и их нельзя складывать, так же как, например, нельзя складывать яблоки и километры. Но тут же можно привести другой пример, из жизни: длину дороги еще не так давно измеряли в днях или часах пути, да и сейчас можно услышать: «…не больше часа общественным транспортом». Или: «…минутная стрелка преодолела последние сантиметры на своем пути, ударили куранты, и начался новый год». Да ведь если вспомнить, то и сами стрелочные часы, наглядно показывающие, что не все так однозначно в отношениях пространства и времени, пришли к нам от более «примитивных» солнечных, то есть, по сути, астрономических, небесных, измеряющих доли периода вращения Земли вокруг своей оси.
Выходит, чтобы измерить время, мы используем пространственные величины?
Не совсем так: пространство, циферблат нужны нам для разделения на части неких временных циклов, которые, конечно, не сводятся только к пространству.
Но остается вопрос: что вообще есть время? Набор различных состояний вещества в пространстве, которые мы последовательно наблюдаем, или нечто большее? Если первое, то время дискретно или непрерывно? Кстати, то же можно спросить и про само пространство: и с ним не все ясно… Как вы думаете, например, сколько в нем измерений? Три? Современная физика подозревает, что гораздо больше. В современных космологических теориях часто говорят про 10, а то и 11 измерений, часть из которых находится в «скрученном» состоянии и недоступна для наших органов чувств.
И опять же, есть такое понятие – планковская длина: 1,6 x 1033 см. Даже самый маленький атом, атом водорода, гигант по сравнению с ней. Но вопрос о том, возможно ли более мелкое пространственное деление, все еще открыт. Есть много оснований думать, что более мелкие структуры в принципе невозможны. А значит, мы снова стоим перед вопросом, действительно ли наш мир непрерывен, или он только таковым кажется? Ведь надежность наших чувств оказалась под сомнением, еще когда были изобретены микроскоп и телескоп. Как сейчас совершенно ясно, даже наше зрение, доверять которому мы привыкли больше всего, скрывает от нас значительно больше, чем показывает…
С часами связана еще одна загадка. В системах отсчета времени издревле используется число 60: так относятся минуты к часу и секунды к минуте. Число как число…
Но для того чтобы оценить все его удобства, достаточно просто посмотреть на циферблат: оно легко делится пополам, на 3, на 4… В современном мире, где циферблат со стрелкой встречается все реже, нам частенько хочется, чтобы в сутках было круглое число часов, а в часе – круглое число минут. Например, 100 часов по 100 минут… Впрочем, с точки зрения удобства представления информации для современных цифровых и компьютерных технологий, наверное, интереснее рассмотреть вариант 16 часов по 16 минут, что ближе к двоичной системе счисления, понятной компьютеру… Но никакой подобной унификации исчисления времени как-то не предвидится, и такие предложения вызывают улыбку.
А вот с измерением углов подобная попытка делалась. В XVIII веке вместо 360 градусов было предложено разделить круг на 400 градов: прямой угол равняется при этом ровно 100 градам. На большинстве калькуляторов предусмотрена возможность считать углы в этих «удобных» единицах. Но даже эту попытку нельзя назвать успешной: старомодные градусы, минуты и секунды крепко держат свои позиции.
Только ли в привычке здесь дело?