К счастью, развитие науки в XX веке привело к революционным изменениям во взглядах на мир и его эволюцию. Сначала выяснилось, что мир нельзя свести к системе частиц, имеющих координаты и скорости: процессы, идущие на уровне атомов и более мелких частиц, характеризуются принципиальной неопределенностью, их невозможно предсказать с абсолютной точностью, можно вести речь лишь о вероятности того или иного исхода. Это, если говорить предельно просто, объясняется законом больших чисел: когда на эксперимент оказывает влияние очень большое количество независимых случайных факторов, то его исход становится практически предопределенным. Так, например, при однократном подбрасывании монетки разумный человек не рискнет предсказать выпадение орла, но при подбрасывании 10 миллиардов монеток можно утверждать, что частота выпадения орла будет равна 1/2 со среднеквадратичной погрешностью всего лишь в пять миллионных. В наблюдаемых же событиях нашего мира участвует значительно большее число случайных микроявлений: например, в 12 граммах (одном моле) углерода содержится 6 * 1023 атомов (это так называемое число Авогадро).
Второй удар по идеалу предсказательной силы науки нанесли математики. На границе XIX и XX веков Анри Пуанкаре заметил, что существует целый класс уравнений, описывающих эволюцию механической системы, решение которых не может быть однозначным! Пример такой системы – детская игрушка «китайский бильярд», в которой катящийся шарик натыкается на своем пути на множество столбиков, отскакивает от стенок, и в результате траектория его движения кажется случайной. Столкновение шарика с препятствием вызывает колоссальные математические трудности – приходится рассматривать очень подробные модели, которые оказываются чрезвычайно неустойчивыми: при изменении положения или скорости шарика на сколь угодно малую величину его дальнейшее движение меняется радикально. Достичь же необходимой точности определения параметров модели, чтобы однозначно описать движение, не удается по принципиальным соображениям, в частности следующим из законов микромира.
Как видим, наука серьезно рисковала оказаться в ситуации, с описания которой началась статья: ничего предсказать нельзя и лучше уж гадать на кофейной гуще. Но, к счастью, в конце XX века научились работать и с такими сложными системами. Можно, например, выделить в жизни системы этапы, когда ее движение предопределено и предсказуемо (в случае с «китайским бильярдом» это этап движения шарика по инерции между двумя столкновениями с препятствиями). Но рано или поздно этот этап закончится, и начнется следующий, такой же «спокойный». Самое интересное творится на их стыке – в это время система словно погружается в хаос, в котором теряется значительная доля информации о движении на предыдущем этапе. Иногда этот кризис длится мгновение, иногда заметное время. Попытка описать движение на переходном этапе не приводит к успеху. Оказывается, что в это время система чувствительна к очень малым воздействиям, каждое из которых может поменять ее дальнейшую судьбу. В «китайском бильярде» направление полета шарика после столкновения с препятствием может значительно изменяться при микроскопических изменениях положения шарика в момент удара. Замечательным достижением явилось то, что в ряде ситуаций исследователи научились предсказывать возможные пути движения системы после кризиса: выяснилось, что иногда этих путей не слишком много. Научились даже указывать способы воздействия на систему, в результате которых ее развитие выходит на нужный режим.
Теперь на смену фатализму пришла новая точка зрения: есть этапы, когда твоя воля бессильна и ты находишься в строгих рамках судьбы. Освободиться из этих рамок можно, лишь совершая сверхусилия (например, сообщив системе достаточную энергию извне, ударив по шарику и изменив тем самым направление и скорость его движения). И есть этапы переломные, когда небольшие по сути изменения и подвижки могут резко изменить дальнейшую судьбу (в рассмотренном примере это этапы соударения со столбиками или стенками бильярда).