The Time class provides methods for adjusting and resetting times, for displaying time values, and for adding two times. Listing 11.2 shows the methods definitions; note how the AddMin() and Sum() methods use integer division and the modulus operator to adjust the minutes and hours values when the total number of minutes exceeds 59. Also because the only iostream feature used is cout and because it is used only once, it seems economical to use std::cout rather than use the whole std namespace.
Listing 11.2. mytime0.cpp
// mytime0.cpp -- implementing Time methods
#include
#include "mytime0.h"
Time::Time()
{
hours = minutes = 0;
}
Time::Time(int h, int m )
{
hours = h;
minutes = m;
}
void Time::AddMin(int m)
{
minutes += m;
hours += minutes / 60;
minutes %= 60;
}
void Time::AddHr(int h)
{
hours += h;
}
void Time::Reset(int h, int m)
{
hours = h;
minutes = m;
}
Time Time::Sum(const Time & t) const
{
Time sum;
sum.minutes = minutes + t.minutes;
sum.hours = hours + t.hours + sum.minutes / 60;
sum.minutes %= 60;
return sum;
}
void Time::Show() const
{
std::cout << hours << " hours, " << minutes << " minutes";
}
Consider the code for the Sum() function. Note that the argument is a reference but that the return type is not a reference. The reason for making the argument a reference is efficiency. The code would produce the same results if the Time object were passed by value, but it’s usually faster and more memory-efficient to just pass a reference.
However, the return value cannot be a reference. The reason is that the function creates a new Time object (sum) that represents the sum of the other two Time objects. Returning the object, as this code does, creates a copy of the object that the calling function can use. If the return type were Time &, however, the reference would be to the sum object. But the sum object is a local variable and is destroyed when the function terminates, so the reference would be a reference to a non-existent object. Using a Time return type, however, means the program constructs a
Caution
Don’t return a reference to a local variable or another temporary object. When the function terminates and the local variable or temporary object disappears, the reference becomes a reference to non-existent data.
Finally, Listing 11.3 tests the time summation part of the Time class.
Listing 11.3. usetime0.cpp
// usetime0.cpp -- using the first draft of the Time class
// compile usetime0.cpp and mytime0.cpp together
#include
#include "mytime0.h"
int main()
{
using std::cout;
using std::endl;
Time planning;
Time coding(2, 40);
Time fixing(5, 55);
Time total;
cout << "planning time = ";
planning.Show();
cout << endl;
cout << "coding time = ";
coding.Show();
cout << endl;
cout << "fixing time = ";
fixing.Show();
cout << endl;
total = coding.Sum(fixing);
cout << "coding.Sum(fixing) = ";
total.Show();
cout << endl;
return 0;
}
Here is the output of the program in Listings 11.1, 11.2, and 11.3:
planning time = 0 hours, 0 minutes
coding time = 2 hours, 40 minutes
fixing time = 5 hours, 55 minutes
coding.Sum(fixing) = 8 hours, 35 minutes
Adding an Addition Operator
It’s a simple matter to convert the Time class to using an overloaded addition operator. You just change the name of Sum() to the odder-looking name operator+(). That’s right: You just append the operator symbol (+, in this case) to the end of operator and use the result as a method name. This is one place where you can use a character other than a letter, a digit, or an underscore in an identifier name. Listings 11.4 and 11.5 reflect this small change.
Listing 11.4. mytime1.h
// mytime1.h -- Time class before operator overloading
#ifndef MYTIME1_H_
#define MYTIME1_H_
class Time
{
private:
int hours;
int minutes;
public:
Time();
Time(int h, int m = 0);
void AddMin(int m);
void AddHr(int h);
void Reset(int h = 0, int m = 0);
Time operator+(const Time & t) const;
void Show() const;
};
#endif
Listing 11.5. mytime1.cpp
// mytime1.cpp -- implementing Time methods
#include
#include "mytime1.h"
Time::Time()
{
hours = minutes = 0;
}
Time::Time(int h, int m )
{
hours = h;
minutes = m;
}
void Time::AddMin(int m)
{
minutes += m;
hours += minutes / 60;
minutes %= 60;
}
void Time::AddHr(int h)
{
hours += h;
}
void Time::Reset(int h, int m)
{
hours = h;
minutes = m;
}
Time Time::operator+(const Time & t) const
{
Time sum;
sum.minutes = minutes + t.minutes;
sum.hours = hours + t.hours + sum.minutes / 60;
sum.minutes %= 60;
return sum;
}
void Time::Show() const
{
std::cout << hours << " hours, " << minutes << " minutes";
}
Like Sum(), operator+() is invoked by a Time object, takes a second Time object as an argument, and returns a Time object. Thus, you can invoke the operator+() method by using the same syntax that Sum() uses:
total = coding.operator+(fixing); // function notation
But naming the method operator+() also lets you use operator notation: