Вот реализация ilist_item. (Напомним, что второй параметр конструктора является необязательным. Если пользователь не задал второй аргумент при вызове конструктора, по умолчанию употребляется 0. Значение по умолчанию указывается в объявлении функции, а не в ее определении; это поясняется в главе 7.)
class ilist_item {
public:
ilist_item( int value, ilist_-item *item_to_link_to = 0 );
// ...
};
inline
ilist_item::
ilist_item( int value, ilist_item *item )
: _value( value )
{
if ( item )
_next = 0;
else {
_next = item-_next;
item-_next = this;
}
Операция insert() в общем случае работает с двумя параметрами – значением и адресом элемента, после которого производится вставка. Наш первый вариант реализации имеет два недочета. Сможете ли вы их найти?
inline void
ilist::
insert( ilist_item *ptr, int value )
{
new ilist_item( value, ptr );
++_size;
}
Одна из проблем заключается в том, что указатель не проверяется на нулевое значение. Мы обязаны распознать и обработать такую ситуацию, иначе это приведет к краху программы во время исполнения. Как реагировать на нулевой указатель? Можно аварийно закончить выполнение, вызвав стандартную функцию abort(), объявленную в заголовочном файле cstdlib:
#include cstdlib
// ...
if ( ! ptr )
abort();
Кроме того, можно использовать макрос assert(). Это также приведет к аварийному завершению, но с выводом диагностического сообщения:
#include cassert
// ...
assert( ptr != 0 );
Третья возможность – возбудить исключение:
if ( ! ptr )
throw "Panic: ilist::insert(): ptr == O";
В общем случае желательно избегать аварийного завершения программы: в такой ситуации мы заставляем пользователя беспомощно сидеть и ждать, пока служба поддержки обнаружит и исправит ошибку.
Если мы не можем продолжать выполнение там, где обнаружена ошибка, лучшим решением будет возбуждение исключения: оно передает управление вызвавшей программе в надежде, что та сумеет выйти из положения.
Мы же поступим совсем другим способом: рассмотрим передачу нулевого указателя как запрос на вставку элемента перед первым в списке:
if ( ! ptr )
insert_front( value );
Второй изъян в нашей версии можно назвать философским. Мы реализовали size() и _size как пробный вариант, который может впоследствии измениться. Если мы преобразуем функции size() таким образом, что она будет просто пересчитывать элементы списка, член _size перестанет быть нужным. Написав:
++_size;
мы тесно связали реализацию insert() с текущей конструкцией алгоритма пересчета элементов списка. Если мы изменим алгоритм, нам придется переписывать эту функцию, как и insert_front(), insert_end() и все операции удаления из списка. Вместо того чтобы распространять детали текущей реализации на разные функции класса, лучше инкапсулировать их в паре:
inline void ilist::bump_up_size() { ++_size; }
inline void ilist::bump_down_size() { --_size; }
Поскольку мы объявили эти функции встроенными, эффективность не пострадала. Вот окончательный вариант insert():
inline void
ilist::
insert( ilist_item *ptr, int value )
if ( !ptr )
insert_front( value );
else {
bump_up_size();
new ilist_item( value, ptr );
}
}
Реализация функций insert_front() и insert_end() достаточно очевидна. В каждой из них мы должны предусмотреть случай, когда список пуст.
inline void
ilist::
insert_front( int value )
{
ilist_item *ptr = new ilist_item( value );
if ( !_at_front )
_at_front = _at_end = ptr;
else {
ptr-next( _at_front );
_at_front = ptr;
}
bump_up_size();
}
inl-ine void
ilist::
insert_end( int value )
{
if ( !_at_end )
_at_end = _at_front = new ilist_item( value );
else _at_end = new ilist_item( value, _at_end );
bump_up_s-ize();
}
find() ищет значение в списке. Если элемент с указанным значением найден, возвращается его адрес, иначе find() возвращает 0. Реализация find()выглядит так:
ilist_item*
ilist::
find( int value )
{
ilist_item *ptr = _at_front;
while ( ptr )
{