int main()
{
Account local( "Anna Livia Plurabelle", 10000 );
Account &loc_ref = global;
auto_ptr pact( new Account( "Stephen Dedalus" ));
{
Account local_too( "Stephen Hero" );
}
// объект auto_ptr уничтожается здесь
}
14.3.1. Явный вызов деструктора
Иногда вызывать деструктор для некоторого объекта приходится явно. Особенно часто такая необходимость возникает в связи с оператором new (см. раздел 8.4). Рассмотрим пример. Когда мы пишем:
char *arena = new char[ sizeof Image ];
то из хипа выделяется память, размер которой равен размеру объекта типа Image, она не инициализирована и заполнена случайными битами. Если же написать:
Image *ptr = new (arena) Image( "Quasimodo");
то никакой новой памяти не выделяется. Вместо этого переменной ptr присваивается адрес, ассоциированный с переменной arena. Теперь память, на которую указывает ptr, интерпретируется как занимаемая объектом класса Image, и конструктор применяется к уже существующей области. Таким образом, оператор размещения new() позволяет сконструировать объект в ранее выделенной области памяти.
Закончив работать с изображением Quasimodo, мы можем произвести какие-то операции с изображением Esmerelda, размещенным по тому же адресу arena в памяти:
Image *ptr = new (arena) Image( "Esmerelda" );
Однако изображение Quasimodo при этом будет затерто, а мы его модифицировали и хотели бы записать на диск. Обычно сохранение выполняется в деструкторе класса Image, но если мы применим оператор delete:
// плохо: не только вызывает деструктор, но и освобождает память
delete ptr;
то, помимо вызова деструктора, еще и возвратим в хип память, чего делать не следовало бы. Вместо этого можно явно вызвать деструктор класса Image:
ptr-~Image();
сохранив отведенную под изображение память для последующего вызова оператора размещения new.
Отметим, что, хотя ptr и arena адресуют одну и ту же область памяти в хипе, применение оператора delete к arena
// деструктор не вызывается
delete arena;
не приводит к вызову деструктора класса Image, так как arena имеет тип char*, а компилятор вызывает деструктор только тогда, когда операндом в delete является указатель на объект класса, имеющего деструктор.
14.3.2. Опасность увеличения размера программы
Встроенный деструктор может стать причиной непредвиденного увеличения размера программы, поскольку он вставляется в каждой точке выхода внутри функции для каждого активного локального объекта. Например, в следующем фрагменте
Account acct( "Tina Lee" );
int swt;
// ...
switch( swt ) {
case 0:
return;
case 1:
// что-то сделать
return;
case 2:
// сделать что-то другое
return;
// и так далее
}
компилятор подставит деструктор перед каждой инструкцией return. Деструктор класса Account невелик, и затраты времени и памяти на его подстановку тоже малы. В противном случае придется либо объявить деструктор невстроенным, либо реорганизовать программу. В примере выше инструкцию return в каждой метке case можно заменить инструкцией break с тем, чтобы у функции была единственная точка выхода:
// переписано для обеспечения единственной точки выхода
switch( swt ) {
case 0:
break;
case 1:
// что-то сделать
break;
case 2:
// сделать что-то другое
break;
// и так далее
}
// единственная точка выхода
return;
Упражнение 14.6
Напишите подходящий деструктор для приведенного набора членов класса, среди которых pstring адресует динамически выделенный массив символов:
class NoName {
public:
~NoName();
// ...
private:
char *pstring;
int ival;
double dval;
};
Упражнение 14.7
Необходим ли деструктор для класса, который вы выбрали в упражнении 14.3? Если нет, объясните почему. В противном случае предложите реализацию.
Упражнение 14.8
Сколько раз вызываются деструкторы в следующем фрагменте:
void mumble( const char *name, fouble balance, char acct_type )
{
Account acct;
if ( ! name )
return;
if ( balance = 99 )
return;
switch( acct_type ) {
case 'z': return;
case 'a':
case 'b': return;
}