return temp * sign;
}
В этом примере переменные m, е и temp объявлены как регистровые, поскольку все они используются в теле цикла, и потому к ним часто выполняется доступ. Однако переменная sign объявлена без спецификатора register, поскольку она не является частью цикла и используется реже.
Происхождение модификатора register Модификатор register был впервые определен в языке С. Первоначально он применялся только к переменным типа int и char или к указателям и заставлял хранить переменные этого типа в регистре ЦП, а не в ОЗУ, где хранятся обычные переменные. Это означало, что операции с регистровыми переменными могли выполняться намного быстрее, чем операции с остальными (хранимыми в памяти), поскольку для опроса или модификации их значений не требовался доступ к памяти.
После стандартизации языка С было принято решение расширить определение спецификатора register. Согласно ANSI-стандарту С модификатор register можно применять к любому типу данных. Его использование стало означать для компилятора требование сделать доступ к переменной типа register максимально быстрым. Для ситуаций, включающих символы и целочисленные значения, это по-прежнему означает помещение их в регистры ЦП, поэтому традиционное определение все еще в силе. Поскольку язык C++ построен на ANSI-стандарте С, он также поддерживает расширенное определение спецификатора register.
Как упоминалось выше, точное количество register-переменных, которые реально будут оптимизированы в любой одной функции, определяется как типом процессора, так и конкретной реализацией C++, которую вы используете. В общем случае можно рассчитывать по крайней мере на две. Однако не стоит беспокоиться о том, что вы могли объявить слишком много register-переменных, поскольку C++ автоматически превратит регистровые переменные в нерегистровые, когда их лимит будет исчерпан. (Это гарантирует переносимость С++-кода в рамках широкого диапазона процессоров.)
Чтобы показать влияние, оказываемое register-переменными на быстродействие программы, в следующем примере измеряется время выполнения двух циклов for, которые отличаются друг от друга только типом управляющих переменных. В программе используется стандартная библиотечная С++-функция clock(), которая возвращает количество импульсов сигнала времени системных часов, подсчитанных с начала выполнения этой программы. Программа должна включать заголовок .
/* Эта программа демонстрирует влияние, которое может оказать использование register-переменной на скорость выполнения программы.
*/
#include
#include
using namespace std;
unsigned int i; //не register-переменная
unsigned int delay;
int main()
{
register unsigned int j;
long start, end;
start = clock();
for(delay=0; delay<50; delay++)
for(i=0; i<64000000; i++);
end = clock();
cout << "Количество тиков для не register-цикла: ";
cout << end-start << ' \n';
start = clock();
for(delay=0; delay<50; delay++)
for(j=0; j<64000000; j++);
end = clock();
cout << "Количество тиков для register-цикла: ";
cout << end-start << '\n';
return 0;
}
При выполнении этой программы вы убедитесь, что цикл с "регистровым" управлением выполняется приблизительно в два раза быстрее, чем цикл с "нерегистровым" управлением. Если вы не увидели ожидаемой разницы, это может означать, что ваш компилятор оптимизирует все переменные. Просто "поиграйте" программой до тех пор, пока разница не станет очевидной.
На заметку.При написании этой книги была использована среда Visual C++, которая игнорирует ключевое слово register. Visual C++ применяет оптимизацию "как считает нужным". Поэтому вы можете не заметить влияния спецификатора register на выполнение предыдущей программы. Однако ключевое слово register все еще принимается компилятором без сообщения об ошибке. Оно просто не оказывает никакого воздействия.
Перечисления