Как было ясно показано физиком Дэвидом Бомом,[11] аргументы Эйнштейна, Подольского и Розена легко могут быть распространены на вопрос, имеют ли частицы определенные спины относительно любой или всех выбранных осей. Далее излагается, как это происходит. Выберем два детектора, приспособленных для измерения спина входящего электрона, один в левой стороне лаборатории, а второй в правой стороне. Установим для двух электронов режим испускания их "спина к спине" из источника, находящегося посередине между двумя детекторами, так что их спины – еще проще, чем их положения и скорости, как в наших более ранних примерах, – скоррелированы. Детали того, как это происходит, не важны; что важно, так это то, что это можно сделать и, фактически, можно сделать легко. Корреляция может быть устроена так, что если левый и правый детекторы настроены на измерение спинов вдоль оси, располагающейся в одном и том же направлении, они будут получать одинаковые результаты: если детекторы настроены на измерение спина соответственно приходящих к ним электронов относительно вертикальной оси и левый детектор обнаруживает, что спин ориентирован по часовой стрелке, так же будет и в правом детекторе; если детекторы настроены на измерение спина вдоль оси, наклоненной на 60 градусов по часовой стрелке от вертикали, и левый детектор измеряет ориентацию спина против часовой стрелки, так же будет и в правом детекторе; и так далее. Еще раз, в квантовой механике лучшее, что мы можем сделать, это предсказать вероятность, что детекторы найдут ориентацию спина по или против часовой стрелки, но мы можем предсказать со 100 процентной определенностью, что какое бы значение спина не было найдено первым детектором, второй найдет такое же.*
Усовершенствование Бомом аргументов ЭПР теперь сводится к тому, что все намерения и цели остаются теми же, которые были в оригинальной версии, которая ориентировалась на положения и скорости. Корреляция между спинами частиц позволяет нам косвенно измерить спин двигающейся налево частицы относительно некоторой оси путем измерения спина у ее двигающегося направо компаньона относительно этой оси. Поскольку это измерение проводится далеко на правой стороне лаборатории, оно не в состоянии повлиять на двигающуюся налево частицу никаким образом. Отсюда последняя должна всегда иметь величину спина точно определенной; все, что мы сделали, измеряет ее, хотя и косвенно. Более того, поскольку мы можем выбрать проведение этого измерения относительно любой оси, такое же заключение должно сохраняться для любой оси: летящий налево электрон должен иметь определенный спин относительно любой и каждой оси, даже если мы можем явно определить его только относительно одной оси в данный момент времени. Конечно, роли левого и правого могут быть изменены друг на друга, что приводит к заключению, что каждая частица имеет определенный спин относительно любой оси.[12]
На этом этапе, не наблюдая очевидной разницы с экспериментом с положениями/скоростями, вы можете последовать примеру Паули и склониться к заключению, что нет смысла в размышлениях о таких проблемах. Если вы не можете в действительности измерить спин относительно отличающейся оси, то какое значение имеет знание о том, имеет ли частица, тем не менее, определенный спин – по или против часовой стрелки – относительно нее? Квантовая механика и физика в целом связаны только с оценками тех свойств мира, которые могут быть измерены. И никто, ни ЭПР, ни Бом не утверждали, что измерения могут быть произведены. Вместо этого, они утверждали, что частицы обладают свойствами, запрещенными принципом неопределенности, даже если мы никогда не сможем явно узнать их точные значения. Такие свойства известны как скрытые свойства, или, более общо,
На этом этапе Джон Белл все перевернул. Он открыл, что даже если вы не можете в действительности определить спин частицы относительно более чем одной оси, тем не менее, если фактически она имеет определенный спин относительно всех осей, тогда имеются тестируемые, наблюдаемые следствия этого спина.
Тестирование реальности