Чтобы пучок антипротонов обладал достаточной светимостью для успеха экспериментов на протон-антипротонном коллайдере, требуется, чтобы энергия антипротонов каким-то образом «сконцентрировалась» на уровне желаемой энергии пучка.
К счастью, голландский физик Симон ван дер Мер придумал, как этого добиться. Ван дер Мер окончил инженерный факультет Дельфтского университета технологии в 1952 году. Он несколько лет был сотрудником Philips в Голландии и в 1956 году поступил в ЦЕРН. В ЦЕРНе он занялся теоретическими аспектами ускорителей, в основном практическим применением теоретических принципов к сооружению и работе ускорителей и коллайдеров.
В 1968 году ван дер Мер провел несколько спорных экспериментов на ISR, но внутренний отчет о своих находках опубликовал лишь четыре года спустя. Причина задержки была простая: физика, которой он тогда занимался, казалась полным безумием. В своем отчете он написал: «В то время идея казалась бездоказательной, чтобы ее публиковать»[115].
Его эксперименты 1968 года позволяли предположить, что действительно есть возможность сконцентрировать антипротоны с начальным распределением энергий в гораздо более узком диапазоне, необходимом, чтобы попасть в накопительное кольцо. В этом методе используется пикап – чувствительный электрод, который определяет антипротоны с энергией, не соответствующей желаемой энергии пучка, и посылает сигнал кикеру – электроду с другой стороны кольца, чтобы вернуть частицы «в строй». Пикап подает кикеру сигнал, как пастух овчарке. Получив команду, собака лаем сгоняет отбившихся овец в стадо, чтобы оно аккуратно вошло в загон.
Ван дер Мер назвал метод стохастическим охлаждением. Слово «стохастический» означает случайность, а «охлаждение» говорит не о температуре пучка, а о случайных движениях и распределении энергий частиц, удерживаемых внутри его. Если повторить процесс много миллионов раз, пучок постепенно сольется и приобретет желаемую энергию. В 1974 году ван дер Мер провел еще несколько испытаний стохастического охлаждения на ISR. Результаты он получил скромные, но достаточные, чтобы считать, что принцип работает.
Между тем Карло Руббиа перестал переживать, что его обогнали физики ЦЕРНа и не дали первым открыть слабые нейтральные токи. Свою докторскую степень Руббиа получил в 1959 году в «Скуола нормале» итальянского города Пиза. Он работал над физикой мюонов в Колумбийском университете, а затем перебрался в ЦЕРН в 1961 году. В 1970-м его он получил место профессора в Гарварде и проводил там один семестр в году, а остаток времени в ЦЕРНе. За постоянные перелеты студенты окрестили его «профессор Алиталия»[116].
Руббиа был упрямый и целеустремленный человек, известный среди коллег тяжелым характером[117]. Он твердо вознамерился никому
Вместе с коллегами из Гарварда Руббиа в середине 1976 года представил Уилсону предложение превратить протонный синхротрон в Фермилабе на 500 ГэВ в про тонантипротонный коллайдер. Уилсон ему отказал, предпочитая сосредоточить усилия на том, чтобы заручиться поддержкой в пользу Тэватрона. Казалось, что метод стохастического охлаждения не сулит особых успехов. Если он не сработает, будет потеряно драгоценное время работы синхротрона. Уилсон согласился на эксперимент стоимостью полмиллиона долларов на небольшой установке, чтобы посмотреть, будет ли работать метод.
Руббиа попросту обратился со своим предложением в ЦЕРН к тогдашнему генеральному директору ЦЕРНа Леону ван Хове и встретил там гораздо более приветливый прием. К июню 1978 года новые испытания стохастического охлаждения в ЦЕРНе дали весьма воодушевляющие результаты, и ван Хове был готов рискнуть. Это давало ЦЕРНу возможность открыть новые частицы, то есть добиться того, что уже несколько лет было прерогативой американских лабораторий. Кроме того, если бы ван Хове не согласился, Руббиа, скорее всего, обратился бы к Леону Ледерману, который возглавил Фермилаб после отставки Уилсона в феврале[118]. «Пожалуй, если бы ЦЕРН не купил идею Карло [Руббиа], он продал бы ее Фермилабу», – рассказал Дарьюла[119].
Руббиа получил разрешение сформировать команду физиков, которая бы спроектировала сложный детектор, необходимый для обнаружения W– и Z-частиц. Под него отвели большой участок под землей на территории ПСС, и поэтому коллаборацию назвали «Подземная зона 1», или UA1. В дальнейшем группа вырастет и включит в себя около 130 физиков.
Через шесть месяцев была сформирована вторая, независимая коллаборация UA2 под руководством Дарьюла. Эта группа была поменьше и включала примерно 50 физиков, которые должны были составлять дружескую конкуренцию UA1. Предполагалось, что детектор UA2 будет менее сложным (например, он не сможет обнаруживать мюоны), но тем не менее сможет независимо подтвердить открытия эксперимента UA1.
Протонный и антипротонный пучки с энергией 270 ГэВ соединятся в ПСС и придут в столкновение, достигнув общей энергии 540 ГэВ, что гораздо больше, чем требуется для обнаружения частиц W и Z.