Дальше случился довольно неуклюжий разворот на 180 градусов. В середине декабря 1973 года физики Национальной ускорительной лаборатории поняли, что их детекторы ошибочно установили пионы, образующиеся в других столкновениях с нейтрино, как мюоны. Из-за этого количество безмюонных событий буквально свелось на нет. Слабые нейтральные токи вернулись. Клайну пришлось признать, что «вполне возможно, что данные говорят о безмюонном сигнале порядка 10 процентов»[104]. Он не мог найти, что бы заставило эти события исчезнуть. Группа Национальной ускорительной лаборатории решила снова отправить в журнал свою первоначальную статью, внеся в нее соответствующие изменения. Статья вышла в Physical Review Letters в апреле 1974 года.
Некоторые физики в шутку называли открытие «переменными нейтральными токами».
В середине 1974 года другие лаборатории подтвердили результат, и путаница рассеялась. Слабые нейтральные токи стали экспериментальным фактом.
Однако следствия этого открытия оказались даже еще важнее. Слабые нейтральные токи подразумевали существование «тяжелых протонов», ответственных за перенос слабого взаимодействия. И если при распаде странных частиц нельзя было установить нейтральных токов, то причиной должно было быть то, что их подавляет механизм ГИМ.
Иными словами, должен существовать четвертый кварк.
7
Значит, это и есть W-частицы
Наконец-то фрагменты головоломки стали складываться. Оказалось, что загадка существования точечных частиц, свободно движущихся внутри нуклонов, что обнаружилось в экспериментах по глубоко неупругому рассеянию в Стэнфордском центре ускорителей, совсем не загадка, а прямое следствие природы сильного ядерного взаимодействия, которое ведет себя вопреки очевидному.
Представляя себе характер взаимодействия между двумя частицами, чаще всего мы вспоминаем о таких примерах, как гравитация и электромагнетизм, в которых чем ближе частицы друг к другу, тем взаимодействие между ними сильнее[105]. Но сильное ядерное взаимодействие ведет себя совсем по-другому. Его сила проявляется в так называемой асимптотической свободе. В асимптотическом пределе нулевого разделения между двумя кварками они перестают взаимодействовать и становятся полностью «свободными». Однако чем больше они отделяются друг от друга, подходя к границам нуклона, тем крепче их держит сильное взаимодействие и не пускает наружу.
(
Похоже, будто кварки привязаны к концам прочной резинки. Когда кварки находятся на близком расстоянии внутри нуклона, резинка не натянута и между ними нет или почти нет взаимодействия. Оно возникает, только когда мы пытаемся отдалить кварки друг от друга и натягиваем резинку (см. рис. 17).
В конце 1972 года принстонский теоретик Дэвид Гросс решил показать, что асимптотическая свобода просто невозможна в квантовой теории поля. Вместо этого с помощью своего студента Фрэнка Вильчека он умудрился доказать прямо противоположное. Квантовые теории полей, основанные на локальных калибровочных симметриях, могут создавать условия для асимптотической свободы. Молодой гарвардский аспирант Дэвид Политцер независимо пришел к такому же открытию. Их статьи вышли бок о бок в июньском номере Physical Review Letters[106].
В июне Гелл-Манн опять поехал в Аспенский центр, сжимая в руке препринты статей Гросса – Вильчека и Политцера. К нему присоединился Фрицш и Генрих Лейтвилер, швейцарский теоретик из Бернского университета, который в то время находился в Калтехе. Вместе они разработали квантовую теорию поля Янга – Миллса для трех цветных кварков и восьми цветных безмассовых глюонов[107]. Чтобы объяснить асимптотическую свободу, глюоны должны были переносить цветной заряд. Никаких трюков с участием механизма, подобного хиггсовскому, не требовалось.
Новой теории нужно было имя. В 1973 году Гелл-Манн и Фрицш назвали ее квантовой адронной динамикой, но следующим летом Гелл-Манн решил, что придумал название получше. «У теории было много достоинств и не было ни одного известного недостатка, – объяснил он. – Следующим летом в Аспене я придумал назвать теорию квантовой хромодинамикой, или КХД, и настойчиво предлагал его Хайнцу Пагельсу и другим»[108].
Великий синтез, объединивший теории сильного и электрослабого взаимодействия в единой структуре SU(3) × SU(2) × U(1), казалось, наконец-то близок.