Поэтому приезд Глэшоу в Париж в марте 1960 года подвиг его не просто выразить одобрение. Гелл-Манна заинтриговала его теория SU(2) × U(1). Он начал понимать, каким образом можно расширить группу симметрии на более высокие размерности. Вдохновленный, он стал пробовать теории все с большими и большими размерностями. Он пробовал три, четыре, пять, шесть и семь измерений, пытаясь найти структуру, которая не соответствовала произведению SU(2) и U(1).
«И тогда я сказал: «Все, хватит!» У меня уже не осталось сил после всего выпитого вина пробовать еще и восемь измерений»[49].
Видимо, вино не способствовало и разговору. Коллеги, с которыми Гелл-Манн выпивал за обедом, были математиками и могли решить его проблему в два счета. Но он ее с ними так и не обсудил.
Глэшоу решил принять предложение Гелл-Манна и поработать с ним в Калтехе. Вскоре после его возвращения из Парижа два физика вместе стали искать решение. Но только после случайного разговора с математиком Калтеха Ричардом Блоком Гелл-Манн обнаружил, что группа Ли SU(3) как раз и предлагает ту схему, которую он искал. В Париже он бросил поиск в тот самый момент, когда чуть было не нашел ее сам.
Самое простое или так называемое неприводимое представление SU(3) – это фундаментальный триплет. Другие теоретики фактически пытались сконструировать модель на основе группы симметрии SU(3) и использовали протон, нейтрон и лямбда-частицу в фундаментальном представлении. Гелл-Манн уже пробовал это и не хотел возвращаться к пройденному. Он просто пропустил фундаментальное представление и обратил внимание на другое.
Одно из представлений SU(3) включает в себя восемь измерений. «Поворот» частицы в одном измерении преобразует ее в частицу в другом измерении, так же как «поворот» изоспина нейтрона в группе симметрии SU(2) превращает его в протон. Если бы Гелл-Манну каким-то образом удалось поместить частицу во всех измерениях, тогда, может быть, он смог бы подойти к пониманию их фундаментальных отношений. Это же не могло быть простым совпадением, что существует восемь барионов: протон, нейтрон, лямбда, три сигма– и две кси-частицы?
Эти частицы различались величинами электрического заряда, изоспина и странности. Если нанести странность на график в сравнении с зарядом или изоспином, появится шестиугольная схема с частицей в каждой вершине и двумя частицами в центре (см. рис. 10). Схема требовала включения протона, нейтрона и лямбды, и Гелл-Манн, вероятно, считал оправданным свое решение не относить их к фундаментальному представлению.
Восьмеричный путь. Гелл-Манн обнаружил, что может вставить барионы, а именно нейтрон (n) и протон (p), и мезоны в два октетных представления группы глобальной симметрии SU(3). Но в представлении с мезонами было только семь частиц. Не хватало одной частицы, мезонного эквивалента Λ0. Эту частицу обнаружил через несколько месяцев Луис Альварес и его команда из Университета Беркли. Ее назвали «эта», η
Когда Гелл-Манн аналогичным образом рассмотрел мезоны, он обнаружил, что должен включить в схему анти-K0, но ему все равно не хватало одной частицы. Не хватало мезонного эквивалента лямбды. Ободренный, он подумал, что должен существовать восьмой мезон с нулевым зарядом и нулевой странностью.
Гелл-Манн обнаружил порядок в двух октетах частиц, основанных на восьмиразмерном представлении глобальной группы симметрии SU(3). Он назвал его восьмеричным путем, в шутку намекая на учение Будды о восьми ступенях к нирване[50]. Он закончил работать над восьмеричным путем в Рождество 1960 года и опубликовал препринт в Калтехе в начале 1961 года. Частицу, которую он предсказал и которая должна была дополнить мезонный октет, обнаружил несколько месяцев спустя американский физик Луис Альварес со своей командой из калифорнийского университета Беркли. Они назвали новую частицу «эта», η.
Гелл-Манн работал в одиночку, но он был не единственным теоретиком, который искал порядок. Юваль Неэман последним вошел в пантеон теоретической физики. Если Гелл-Манн поступил в Йель в нежном возрасте 15 лет, то Неэман, родившийся в Тель-Авиве, поступил в Хагану, подпольную еврейскую организацию в Палестине во время британского мандата. Он командовал пехотным батальоном во время арабо-израильской войны 1948 года и возглавлял отдел планирования Армии обороны Израиля.
Он уже дослужился до полковника, когда решил попробовать получить докторскую степень по физике. Моше Даян, тогда глава Генштаба, согласился назначить его военным атташе в посольство Израиля в Лондоне. Даян посчитал, что Неэман может учиться в аспирантуре в свободное время.
Сначала Неэман собирался изучать теорию относительности в Кингс-колледже в Лондоне, но он быстро понял, что из-за пробок на дорогах не успевает вовремя добраться туда из посольства в Кенсингтоне к началу лекций и семинаров. Тогда он перешел в Имперский колледж и переключился на физику частиц. В Имперском колледже его направили к пакистанскому теоретику Абдусу Саламу.