Читаем Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим полностью

Такая информация очень ценна. Если множество пользователей выбирают результат поиска в нижней части страницы результатов, система предположит, что он более актуален, и алгоритм ранжирования Google автоматически поместит его выше на страницах последующих поисков (то же самое относится к рекламным объявлениям). «Нам нравится учиться у больших, “шумных” наборов данных», — делится один из сотрудников Google.[104]

Выбросы данных — это механизм, лежащий в основе многих компьютеризированных служб, таких как распознавание голоса, спам-фильтры, переводчики и других. Когда пользователь указывает в программе распознавания голоса, что она неправильно поняла произнесенное слово, он, по сути, «тренирует» систему, совершенствуя ее.

Многие компании начинают подобным образом проектировать собственные системы сбора и использования информации. В начале деятельности компании Facebook ее специалисты по обработке данных изучили широкую базу выбросов данных и обнаружили, что пользователь чаще всего предпринимает то или иное действие (публикует материал, нажимает значок и пр.) по примеру своих друзей. Компания сразу модернизировала свою систему так, чтобы почти все действия пользователя становились известными его друзьям, и это вызвало новую волну активности на сайте.

Идея распространилась далеко за пределы интернет-сектора — в каждую компанию, у которой есть возможность собирать данные обратной связи с пользователем. Устройства для чтения электронных книг записывают большие объемы данных о литературных предпочтениях и привычках людей, которые ими пользуются: как быстро они читают страницу или раздел, пролистывают ли некоторые страницы, едва прочитав, или, может, вовсе не дочитывают книгу. Книги фиксируют, если читатели подчеркивают отрывки или делают заметки на полях. Возможность собирать такого рода информацию превращает чтение, которое долгое время считалось сугубо индивидуальным, в коллективную деятельность. Объединенные выбросы данных расскажут издателям и авторам то, что им ни за что не удалось бы узнать с помощью количественных измерений: предпочтения людей и свойственные им модели чтения. Это коммерчески ценная информация: компании — производители электронных книг могут продавать ее издателям для улучшения содержания и структуры книг. Компания Barnes & Noble проанализировала данные со своих устройств для чтения электронных книг Nook, в результате чего выяснила, что люди, как правило, забрасывали чтение длинных книг научного содержания на полпути. Это открытие вдохновило компанию на создание Nook Snaps — коротких тематических выпусков, посвященных актуальным вопросам, таким как здоровье и текущие события.[105]

Программы дистанционного обучения, такие как Udacity, Coursera и edX, отслеживают взаимодействия студентов в интернете, чтобы определить наиболее удачные педагогические подходы. «Вместимость» аудитории порой превышает десятки тысяч студентов, что обеспечивает чрезвычайно большой объем данных. Теперь профессора могут увидеть, что многие студенты повторно просмотрели тот или иной отрывок лекции, и предположить, что определенный момент в ней был непонятен. Профессор Стэнфордского университета Эндрю Нг, преподавая курс машинного обучения в рамках программы Coursera, отметил, что около 2000 студентов неправильно поняли вопрос в домашнем задании, но выдали совершенно одинаковые ответы. Очевидно, они все делали одну и ту же ошибку. Но какую?

Проведя небольшое исследование, Эндрю понял, что студенты изменили порядок алгебраических уравнений в алгоритме. Впредь, если другие студенты сделают ту же ошибку, система не просто сообщит им, что что-то не так, но и посоветует проверить вычисления. Система также работает с большими данными, анализируя каждое сообщение на форуме, прочитанное студентами, и правильность выполненного ими домашнего задания. Это позволяет спрогнозировать вероятность того, что студент, прочитавший то или иное сообщение, правильно решит задание, а значит, определить какие сообщения наиболее полезны. Все это невозможно было узнать прежде. И эти знания могут навсегда изменить подход к преподаванию.

Выбросы данных могут дать компаниям огромные конкурентные преимущества, а также стать мощным рыночным барьером для конкурентов. Возьмем новую компанию, которая разработала интернет-магазин, социальную сеть или поисковую систему, намного лучшую, чем современные лидеры в этих областях — Amazon, Google или Facebook. Новой компании будет трудно конкурировать не только из-за отсутствия эффекта масштаба, сетевой выгоды или бренда, а еще и потому, что эффективность лидирующих компаний во многом связана с выбросами данных, собранными при взаимодействии с клиентами и включенными обратно в службу. Сможет ли новый сайт дистанционного обучения предложить ноу-хау, способное посоревноваться в эффективности с теми, кто уже собрал гигантское количество данных, чтобы определить наиболее успешные подходы?

<p>Ценность открытых данных</p>
Перейти на страницу:

Похожие книги