Читаем Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим полностью

Представление о том, как использовать всю совокупность информации, а не ее часть, и постепенное осознание преимуществ менее точных данных коренным образом меняют взаимодействие людей с окружающим миром. По мере того как методы работы с большими данными становятся неотъемлемой частью повседневной жизни, общество в целом устремляется к всеобъемлющему, более широкому, чем раньше, пониманию явлений — своего рода мышлению «N = всё». Возможно, мы станем менее требовательными к точности и однозначности в областях, где полагались на четкость и определенность (пусть даже сомнительные). Мы согласимся с таким подходом при условии, что взамен получим более полную картину явлений. Так на картинах импрессионистов мазки кажутся беспорядочными при ближайшем рассмотрении, но отступите на шаг — и вы увидите величественную картину.

Большие данные со свойственной им полнотой и беспорядочностью помогают нам ближе подойти к осознанию реального положения вещей, чем это удавалось в условиях зависимости от малых данных и точности. Призыв к частичным, но точным данным вполне понятен. Наше постижение мира, возможно, было неполным, а порой и вовсе неверным в условиях ограниченности данных, поддающихся анализу, зато они давали ощущение уверенности и обнадеживающей стабильности. Кроме того, поскольку мы могли собрать и изучить лишь ограниченный объем данных, не возникало непреодолимого желания получить их абсолютно все и рассмотреть со всех возможных сторон. В узких рамках малых данных мы могли гордиться точностью, но, даже измеряя все до мельчайших подробностей, упускали из виду более масштабную картину.

Большие данные могут потребовать, чтобы мы научились спокойнее относиться к беспорядочности и неопределенности. Представления о точности, которые, казалось бы, служат нам ориентирами (например, что круглые фигуры подходят круглым отверстиям, существует только один ответ на вопрос и т. п.), лучше поддаются изменениям, чем мы можем предположить. Вместе с тем такое предположение, принятое на веру, приближает нас к пониманию реального положения вещей.

Описанные изменения образа мышления знаменуют радикальные преобразования. Они ведут к третьему шагу, который может во многом подорвать устои общества, основанного на понимании причин всех событий. Вместе с тем поиск логических взаимосвязей между данными и выполнение действий с ними (что и является темой следующей главы) зачастую дают вполне достойный результат. 

<p>Глава 4</p><p>Корреляция</p>

В 1997 году 24-летний Грег Линден на время отложил свою докторскую диссертацию в области искусственного интеллекта в Вашингтонском университете, чтобы поработать над местным стартапом по продаже книг в интернете. Этот онлайн-магазин появился всего два года назад, но уже вел оживленную торговлю. «Мне очень понравилась идея продавать книги, продавать знания, а еще помогать людям находить следующий источник знаний, с которым они с удовольствием бы ознакомились», — вспоминает Грег. Этим магазином был Amazon.com, и Линден был нанят в качестве инженера-программиста для обеспечения бесперебойной работы сайта.

Среди сотрудников компании Amazon были не только технари. В то время там работала дюжина литературных критиков и редакторов, которые писали отзывы и предлагали новые наименования. Хотя история сайта Amazon хорошо знакома большинству людей, мало кто помнит о том, что его контент первоначально создавался вручную. Редакторы выбирали наименования, которые рекомендовались на веб-страницах Amazon. Редакторский отдел отвечал за так называемый «голос Amazon», который по праву считался гордостью компании и источником ее конкурентного преимущества. Примерно в то же время вышла статья в Wall Street Journal, в которой сотрудников отдела чествовали как самых влиятельных литературных критиков страны, поскольку им удавалось стимулировать высокий уровень продаж.

Затем Джефф Безос, основатель и СЕО[53] Amazon, начал экспериментировать с многообещающей идеей: что если рекомендовать конкретные книги отдельным клиентам в зависимости от их предыдущих покупок? С момента начала деятельности Amazon компания накопила массу данных о каждом клиенте: о покупках, о просмотренных, но не приобретенных книгах и времени, затраченном на их просмотр, а также о книгах, приобретенных одновременно.

Объем данных был настолько внушительным, что поначалу Amazon приходилось обрабатывать их обычным способом — путем отбора выборки и ее анализа с целью выявить сходство между клиентами. Рекомендации выходили приблизительными. Купив книгу о Польше, вы получили бы массу предложений по Восточной Европе, а купив книгу о детях — завалены подобной литературой. «Как правило, вам предлагались небольшие вариации на тему вашей предыдущей покупки. И так до бесконечности, — вспоминает Маркус Джеймс, литературный критик Amazon в 1996–2001 годах, в своих мемуарах Amazonia. — Создавалось ощущение, что вы отправились за покупками с бестолковым советчиком».[54]

Перейти на страницу:

Похожие книги