Перепись 1880 года длилась целых восемь лет. Ее данные успели устареть еще до публикации результатов. По подсчетам, на подведение итогов переписи 1890 года требовалось 13 лет — смехотворный срок, не говоря уже о нарушении Конституции. В то же время распределение налогов и представительство в Конгрессе зависели от численности населения, поэтому крайне важно было своевременно получать точные данные.
Проблема, с которой столкнулось Бюро переписи населения США, напоминает трудности современных ученых и бизнесменов: поток данных стал непосильным. Объем собираемой информации превысил все возможности инструментов, используемых для ее обработки. Срочно требовались новые методы. В 1880-х годах ситуация оказалась настолько удручающей, что Бюро переписи населения США заключило контракт с Германом Холлеритом, американским изобретателем, на использование его идеи с перфокартами и счетными машинами для переписи 1890 года.[24]
С большим трудом ему удалось сократить время на сведение результатов с восьми лет до менее одного года. Это было удивительное достижение, которое положило начало автоматизированной обработке данных (и заложило основу будущей компании IBM). Однако такой метод получения и анализа больших объемов данных обходился все еще слишком дорого. Каждый житель Соединенных Штатов заполнял форму, из которой создавалась перфокарта для подсчета итогов. Трудно представить, как в таких условиях удалось бы провести перепись быстрее чем за десять лет. Но отставание определенно играло против нации, растущей не по дням, а по часам.
Основная трудность состояла в выборе: использовать все данные или только их часть. Безусловно, разумнее всего получать полный набор данных всех проводимых измерений. Но это не всегда выполнимо при огромных масштабах. И как выбрать образец? По мнению некоторых, лучший выход из ситуации — создавать целенаправленные выборки, которые представляли бы полную картину. Однако в 1934 году польский статистик Ежи Нейман ярко продемонстрировал, как такие выборки приводят к огромным ошибкам. Оказалось, разгадка в том, чтобы создавать выборку по принципу случайности.[25]
Работа статистиков показала, что на повышение точности выборки больше всего влияет не увеличение ее размера, а элемент случайности. На самом деле, как ни странно, случайная выборка из 1100 ответов отдельных лиц на бинарный вопрос («да» или «нет») имеет более чем 97%-ную точность при проецировании на все население. Это работает в 19 из 20 случаев, независимо от общего размера выборки, будь то 100 000 или 100 000 000.[26] И трудно объяснить математически. Если вкратце, то с определенного момента роста данных предельное количество новой информации, получаемой из новых наблюдений, становится все меньше.
То, что случайность компенсирует размер выборки, стало настоящим открытием, проложившим путь новому подходу к сбору информации. Данные можно собирать с помощью случайных выборок по низкой себестоимости, а затем экстраполировать их с высокой точностью на явление в целом. В результате правительства могли бы вести небольшие переписи с помощью случайных выборок ежегодно, а не раз в десятилетие (что они и делали). Бюро переписи населения США, например, ежегодно проводит более двухсот экономических и демографических исследований на выборочной основе, не считая переписи раз в десять лет для подсчета всего населения. Выборки решали проблему информационной перегрузки в более раннюю эпоху, когда собирать и анализировать данные было очень трудно.
Новый метод быстро нашел применение за пределами государственного сектора и переписей. В бизнесе случайные выборки использовались для обеспечения качества производства, упрощая процессы контроля и модернизации и к тому же снижая расходы на них. Поначалу для всестороннего контроля качества требовалось осматривать каждый продукт, выходящий с конвейера. Сейчас достаточно случайной выборки тестовых экземпляров из партии продукции. По сути, случайные выборки уменьшают проблемы с большими данными до более управляемых. Кроме того, они положили начало опросам потребителей в сфере розничной торговли, фокус-группам в политике, а также преобразовали большинство гуманитарных наук в социальные.
Случайные выборки пользовались успехом. Они же сформировали основу для современных масштабных измерений. Но это лишь упрощенный вариант — еще одна альтернатива сбора и анализа полного набора данных, к тому же полная недостатков. Мало того что ее точность зависит от случайности при сборе данных выборки — достичь этой случайности не так-то просто. Если сбор данных осуществляется с погрешностью, результаты экстраполяции будут неправильными.