В 1974 году нидерландский физик Герард Хуфт{234} и советский физик Александр Поляков{235} независимо друг от друга доказали, что в рамках калибровочных теорий объединения, включающих электромагнитное взаимодействие, должны существовать магнитные монополи. В 1976 году британский физик Томас Киббл (один из шести авторов, предложивших в 1964 году механизм Хиггса, см. главу 11) доказал, что при фазовом переходе с нарушением калибровочной симметрии новая фаза не обязана быть однородной, но может иметь так называемые
В 1979 году гарвардский аспирант Джон Прескилл рассчитал, что во время фазового перехода ТВО должны были образоваться монополи массой в 1016 раз больше массы протонов в количестве, сопоставимом с числом протонов{237}. Если бы все было так, масса Вселенной в то время стала бы настолько большой, что она схлопнулась бы менее чем за 1200 лет{238}.
В 1980-е проводилось множество экспериментов по поиску магнитных монополей, но ни один так и не был найден{239}. В 1987 году я провел шесть месяцев своего творческого отпуска в Италии, работая в проекте MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory — «Обсерватория монополей, астрофизики и космических лучей») в Национальной лаборатории Гран-Сассо, расположенной под землей. Эта лаборатория представляет собой магистральный туннель, проложенный через горную цепь недалеко от горы Л’Акуила, где в 2009 году произошло землетрясение (лаборатория не пострадала). Основной целью эксперимента MACRO был поиск магнитных монополей, и он стал самым чувствительным экспериментом из когда-либо проводимых в этой области. Обнаружить монополи так и не удалось, но к 2002 году в этом эксперименте был установлен очень строгий верхний предел для регистрации потока монополей, намного ниже расчетного значения, основанного на эффекте, который монополи должны производить на магнитные поля галактик{240}.
Тем не менее провал попытки обнаружить магнитные монополи — это в худшем случае проблема теорий великого объединения, но никак не модели Большого взрыва. Я упомянул об этом в основном из исторических соображений, поскольку проблема монополей сильно поспособствовала привлечению физиков, работающих с элементарными частицами, к работе над космологией ранней Вселенной.
Старая и новая инфляция
В 1980 году несколько физиков и астрофизиков начали независимо друг от друга разрабатывать сценарий развития ранней Вселенной, который должен был в конечном итоге представить возможное решение проблем, связанных с общепринятой моделью Большого взрыва. В том же году, 11 января, российский физик Алексей Старобинский, работавший со Стивеном Хокингом в Кембридже, отправил в журнал Physics Letters статью, в которой доказывал, что квантовые эффекты в ранней Вселенной могли привести к появлению пространства де Ситтера, а значит, к экспоненциальному расширению Вселенной, называемому теперь
В 1970 году Хокинг и Роджер Пенроуз применили общую теорию относительности, чтобы доказать, что наша Вселенная вначале представляла собой сингулярность, бесконечно малую точку бесконечно высокой плотности{241}. С тех пор этот вывод используется богословами в качестве доказательства того, что наша Вселенная имела начало и, хотя это и не является следствием, что у нее должен был быть единоличный Творец{242}. Старобинский доказал, а Хокинг и Пенроуз согласились, что квантовые эффекты в ранней Вселенной уничтожили сингулярность. Общая теория относительности не относится к квантовым теориям и перестает действовать на расстояниях меньше планковской длины — 10-35 м{243}.
5 мая 1980 года знакомый астрофизик Демосфен Казанас из Центра космических полетов имени Годдарда отправил в Astrophysical Journal статью, озаглавленную «Динамика Вселенной и спонтанное нарушение симметрии»{244}. В ней он утверждает, что фазовый переход в ранней Вселенной, связанный со спонтанным нарушением симметрии, приведет к экспоненциальному расширению, которое может объяснить наблюдаемую изотропность Вселенной. Я считаю, что это была первая опубликованная работа, прямым текстом признающая экспоненциальное расширение в качестве решения одной из главных проблем с общепринятой моделью Большого взрыва, а именно проблемы горизонта.
9 сентября 1980 года японский физик Кацухико Сато отправил в «Ежемесячный обзор Королевского астрономического общества» (Monthly Notices of the Royal Astronomical Society) статью, в которой также доказывал, что фазовый переход первого рода может привести к экспоненциальному расширению Вселенной{245}. Он предположил, что происхождение галактик может объясняться флуктуациями, но не упомянул другие проблемы, связанные с моделью Большого взрыва.