Очевидно, что протон очень стабилен, иначе мы бы не наблюдали столько водорода во Вселенной через 13,8 млрд. лет после ее рождения. Однако, как мы вскоре увидим, потенциальная способность протонов распадаться, хоть и спустя большое количество времени, имеет огромные космологические последствия.
Стандартная модель элементарных частиц и взаимодействий появилась отчасти благодаря попытке уложить все эти новые частицы в простую схему. Ее ожидал впечатляющий успех. Вот эта схема: барион состоит из трех кварков, антибарион состоит из трех антикварков, мезон состоит из кварка и антикварка. Пока не было обнаружено ни одного адрона, который нельзя было бы составить из кварков, перечисленных в табл. 11.1, и их антикварков.
Ядра атомов, образующих знакомую нам материю, состоят из u- и d-кварков. Протон имеет кварковый состав uud, а нейтрон —
Открытие в 2012 году частицы, которая почти наверняка является долгожданным бозоном Хиггса, стало «вишенкой на торте» стандартной модели. Бозон Хиггса — частица с нулевым спином, обозначаемая Н, — придает массу лептонам и слабым бозонам. Кварки получают небольшую долю своей массы таким же образом, но большая ее часть возникает благодаря другому механизму, в котором участвует сильное взаимодействие, подробнее описывать которое излишне. Фотон и глюон — безмассовые частицы.
Теперь давайте рассмотрим теоретические построения, лежащие в основе стандартной модели. Мы увидим, что они распространяются далеко за пределы этого отдельного случая, охватывая все наши представления о смысле физических законов.
Симметрия и инвариантность
Центральными понятиями современной физики, от теории относительности и квантовой механики до стандартной модели, являются принципы симметрии и то, каким образом эти принципы нарушаются. Принципы симметрии очень помогли нам в понимании Вселенной — как ранней, так и современной.
Симметрия тесно связана с еще одним понятием —
Если взять сферический шар, состоящий из мягкого и податливого вещества (подобно земле), и начать быстро вращать его, он начнет раздуваться в области экватора и его сферическая симметрия нарушится. Однако мяч все еще будет сохранять вращательную симметрию относительно оси вращения.
Но здесь нас больше интересуют не симметрии геометрических фигур, а симметрии, заключенные в математических принципах, называемых «законами физики». Это принципы, возникающие в моделях, которые физики разрабатывают, чтобы описывать свои наблюдения.
Если наблюдение инвариантно в отношении какого-то действия, скажем изменения угла обзора, под которым проводится наблюдение, то модель, должным образом описывающая это действие, должна заключать в себе соответствующую симметрию. В частности, в этой модели не может действовать трехмерная система координат, в которой оси
В 50-х годах XX века ученые доказали, что слабое ядерное взаимодействие нарушает зеркальную симметрию, которую специалисты называют
Физика частиц выделяет также оператор С, который заменяет частицу ее античастицей, и оператор T, запускающий время в обратном направлении. В 1960-х ученые открыли, что комбинированная СР-симметрия слегка нарушается при распаде нейтральных каонов. Комбинированная СРТ-симметрия считается фундаментальной. В этом случае нарушение СР-симметрии предполагает нарушение Т-симметрии. Прямое нарушение Т-симметрии эмпирически подтвердилось; однако нарушение СРT-инвариантности до сих пор не наблюдалось ни в одном физическом процессе.
Заметьте, что нарушение Т-симметрии не стоит трактовать как обоснование для концепции стрелы времени, поскольку этот эффект очень мал — порядка 0,1% и не препятствует обращению направления времени. Оно просто делает одно временное направление несколько более вероятным, чем второе.
СРТ-инвариантность означает, в частности, что, если взять любую реакцию, заменить все частицы в ней античастицами, запустить ее в обратном направлении и наблюдать ее в зеркало, вы не сможете отличить эту реакцию от изначальной. Сейчас похоже, что это так.