Этот график не опирается на старые данные и теории, на нем представлена последняя информация на момент написания этой книги, когда появились результаты исследований микроволнового анизотропного зонда Уилкинсона (WMAP), существенно дополнившие предыдущие данные{203}. На подходе еще более точные результаты наблюдений, выполненные космической обсерваторией «Планк», однако данных, полученных WMAP, вполне достаточно для наших целей.
Здесь указана зависимость распространенности ядер химических элементов от ΩBh2, где
Оценить первичную распространенность элементов нелегко. Ученым приходится опираться на значения, измеренные для современной Вселенной, а затем вычислять, какая доля приходится на первичные элементы.
Не4 также образуется в звездах в ходе первичной реакции ядерного синтеза, протекающей в их недрах, однако он выходит наружу только тогда, когда они взрываются сверхновыми, а это происходит только с самыми тяжелыми звездами. Не4 можно наблюдать в горячем ионизированном газе в других галактиках и так называемых звездах с низкой металличностью, при этом металлом считается любой элемент после гелия, то есть такие звезды, вероятнее всего, состоят преимущественно из первичного вещества.
Все еще существуют некоторые разногласия относительно точного соотношения Не4 и протонов, однако расчеты становятся все более точными{204}. На самом деле, как и в случае упомянутого ранее ограничения, которое космология накладывает на количество типов нейтрино, распространенность гелия также прочно связана с точным временем жизни нейтронов, так что тут мы снова видим, как важна субатомная физика для космологии и наоборот{205}.
Дейтерий, Н2, имеет очень нестойкое ядро, состоящее из протона и нейтрона. Оно легко разрушается в ходе ряда астрофизических процессов. Последняя оценка его первичной распространенности основана на наблюдении линий поглощения в очень далеких межгалактических облаках, где его источником являются квазары.
Li7 образуется и разрушается в звездах. Его первичную распространенность оценили на основании его распространенности в атмосферах самых старых звезд в гало нашей Галактики, которые, как считается, еще не сильно истощили свои запасы лития.
Первичный Н2 превращается в звездах в Не3, однако данные измерений говорят о том, что их суммарная распространенность примерно постоянна. Поэтому распространенность Не3 вычисляют, вычитая из этой суммы распространенность Н2, оцененную другим способом.
Как можно увидеть на рис. 10.4, модель первичного нуклеосинтеза в значительной степени согласуется с данными наблюдений. Первичная распространенность ядер четырех элементов рассчитана точно на основании единственного параметра — барионной плотности. Все ядра, кроме Не4, сильно зависят от этого параметра, хотя точные значения их распространенности рассчитаны математически. Все пять значений полностью соответствуют данным наблюдений.
Благодаря Дэвиду Шрамму, а также его студентам и коллегам модель Большого взрыва прочно укрепилась, подтвержденная этими данными. Ни одна из альтернативных теорий, которыми еще бросаются некоторые ученые, и близко не подошла к такому результату. На самом деле они даже не представляют, как это можно сделать. Давайте посмотрим правде в глаза. Большой взрыв произошел.
Переходим к атомам
Спустя 30 минут после возникновения Вселенной все успокоилось. В то время температура достигала 300 млн. градусов, а средняя кинетическая энергия — порядка 25 кэВ, при этом она постоянно снижалась. Ядерные реакции остановились, поскольку температура теперь была для них слишком низкой. Электроны, которых когда-то было примерно столько же, сколько фотонов, практически полностью аннигилировали в реакции с позитронами, остался всего один электрон на миллиард благодаря асимметрии между материей и антиматерией. Эта асимметрия, без которой не существовало бы Вселенной, какой мы ее знаем, до сих пор не до конца понятна ученым. Об этом мы поговорим позднее, в главе 11.
В этот момент Вселенная по большей части (за исключением темной материи) состояла из фотонов (69 96) и нейтрино (31%), количество протонов, электронов и ядер Не4 было в миллиарды раз меньше, и еще меньше встречалось ядер He3, Li7, Be7 и дейтронов. Нейтроны либо исчезли в процессе бета-распада, либо были поглощены ядрами.