Читаем Бог и Мультивселенная полностью

Хотя мы все еще называем химические элементы атомами, они больше не могут считаться неделимыми, если вместо низкоэнергетических химических реакций рассматривать высокоэнергетические ядерные реакции. Химические атомы — это не точечные частицы, но сложные структуры, состоящие из более простых объектов — ядер и электронов. Более того, в ходе ядерных реакций они могут превращаться друг в друга, воплощая тем самым мечту древних алхимиков.

Б 30-х годах XX века выяснилось, что ядра также состоят из более простых частиц, протонов и нейтронов, при этом нейтроны слегка тяжелее протонов и электрически нейтральны, хотя и представляют собой миниатюрные магниты, подобно протонам и электронам. Протон имеет положительный заряд. Водород — простейший элемент, состоящий из одного протона и одного электрона. Добавьте к ядру водорода нейтрон и получите тяжелый водород, или дейтерий. Добавьте еще один нейтрон и получите тритий. Добавьте к тритию еще один протон и получите гелий.

Каждый элемент периодической таблицы Менделеева определяется атомным числом Z, равным количеству протонов в ядре. Ему же равно количество электронов в электрически нейтральном атоме. Атомы с числом электронов меньше или больше числа протонов — это электрически заряженные ионы.

Изменение числа нейтронов в ядре не меняет положение атома в периодической таблице, но создает его изотоп, химические свойства которого в целом не очень отличаются от свойств исходного изотопа, но ядерные свойства могут быть совершенно иными. Стандартная формула изотопа выглядит как XA, где X — химический символ, который соответствует атомному числу Z. Число A обычно называют атомной массой, но его более точное название — нуклонное число, то есть число протонов и нейтронов в ядре (термином «нуклоны» обозначаются как протоны, так и нейтроны).

Известно три типа радиоактивного излучения: α-лучи представляют собой поток ядер гелия, β-лучи — поток электронов или позитронов, γ-лучи — поток высокоэнергетических фотонов.

В 1932 году английский физик Джеймс Чедвик подтвердил существование нейтронов. Итак, на тот момент состав Вселенной сводился всего к четырем элементарным частицам: электронам, протонам и нейтронам, составляющим атомы, и фотонам, структурным единицам света.

Однако, как мы уже выяснили, в том же году Андерсон подтвердил предсказанное Дираком существование антиэлектрона, или позитрона. Из этого следовало, что существует целый отдельный мир, состоящий из вещества, называемого антиматерией. К примеру, атом антиводорода состоит из антипротона и позитрона. Однако существование антипротонов, антинейтронов и антиводорода экспериментально было подтверждено только в 50-х годах XX века.

В 1936 году Андерсон и его ассистент Сет Неддермейер обнаружили в космическом излучении еще одну частицу, похожую на электрон, но тяжелее его. Сейчас эта частица называется мюоном. По сути, она представляет собой более тяжелый электрон. Мюон стал первым из вереницы новых частиц, открытых в 50-х и 60-х годах XX века.

Протоны в ядре плотно прилежат друг к другу, хотя их положительные заряды отталкиваются с большой силой. Что же тогда удерживает вместе компоненты атомного ядра? Поскольку нейтрон не имеет заряда, а только очень слабое магнитное поле и поскольку сила тяготения намного слабее силы электрического взаимодействия частиц такой маленькой массы, ядро должна удерживать какая-то другая сила. Эту силу называют сильным ядерным взаимодействием, поскольку ее должно хватить на то, чтобы преодолеть электромагнитное отталкивание положительно заряженных протонов в ядре. В то время как электромагнитная сила действует на огромных расстояниях (до нас доходит свет от галактик, расположенных в миллиардах световы хлет от Земли), сильное ядерное взаимодействие работает только для частиц, расположенных в нескольких фемтометрах (10-15 м) друг от друга.

Более того, позднее ученые выяснили, что сила, ответственная за радиоактивный распад ядра, при котором испускаются β-лучи (поток электронов), — это отдельная сила, действующая на еще меньшем расстоянии и называемая слабым ядерным взаимодействием. Кроме того, выяснилось, что именно слабое ядерное взаимодействие является основным источником энергии Солнца и других звезд.

В 1930 году Паули предположил, что «потерянная» энергия при β-распаде уносится нейтральной частицей с крошечной массой, которую итальянский физик Энрико Ферми окрестил нейтрино. Существование нейтрино подтвердилось только в 1956 году.

Я не буду вдаваться в подробности хорошо известной истории развития ядерной энергетики до начала Второй мировой войны и ее использования для создания невероятно мощных бомб, а также нового, способного вызвать проблемы источника энергии, который тем не менее в конечном итоге может оказаться единственным реальным способом удовлетворения мировых энергетических потребностей.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука