Читаем Бог и Мультивселенная полностью

Следующий серьезный успех астрономии XIX века связан с именем английского астронома Уильяма Хаггинса (1824–1910), проводившего масштабные исследования спектров звезд с целью определения их химического состава. Он доказал, что звезды состоят из тех же химических элементов, которые встречаются на Земле. Он также обнаружил углеводороды в составе комет. Но главное, в 1868 году Хаггинс стал первым, кто измерил лучевую скорость звезды (проекцию вектора скорости на луч зрения, то есть на прямую линию, соединяющую звезду с наблюдателем), предположив, что наблюдаемое смещение спектральных линий происходит из-за эффекта Доплера.

В 1842 году Кристиан Андреас Доплер (1803–1853) доказал, что длина волны изменяется при перемещении источника излучения относительно наблюдателя (приближении к нему или отдалении от него). Таким образом, если звезда удаляется от нас, видимый свет от нее будет сдвигаться в красную (длинноволновую) сторону спектра, а если приближается — в синюю (коротковолновую). На основе числового значения изменения частоты астроном может рассчитать лучевую скорость. К примеру, красное смещение определяется по формуле z = 1 + Δλ/λ, где Δλ/λ — относительное изменение длины волны. Тогда лучевая скорость будет равна v = zc, где с — скорость света, для v << с. Точная формула, применимая для всех скоростей, намного сложнее и выводится из специальной теории относительности.

Как мы увидим в дальнейшем, открытие сдвига спектральных линий астрономических объектов имело серьезные последствия в XX веке, когда ученые обнаружили, что большинство галактик удаляются от нас, а степень их красного смещения указывает на расстояние до них. В результате удалось определить, что наша Вселенная во много раз больше, чем то расстояние до звезд в пару-тройку световых лет, которое удалось измерить с помощью звездного параллакса.

А пока астрономы XIX века осознавали размеры Вселенной, их современники-физики обдумывали проблемы возраста Солнца и Земли. В 1863 году британский физик Уильям Томсон, лорд Кельвин (1824–1907), оценил возраст Земли, исходя из предположения, что она изначально находилась в расплавленном состоянии, постепенно затвердев по мере остывания. В результате у него получился срок 20 млн. лет. В 1856 году немецкий физик Герман фон Гельмгольц, сформулировавший закон сохранения энергии, занялся анализом возраста Солнца и предположил, что оно черпает энергию из гравитационного сжатия. Таким образом, энергия излучаемого света высвобождается при снижении потенциальной энергии Солнца. Пользуясь подходом Гельмгольца, в 1862 году Кельвин сделал вывод, что Солнце не может быть старше 20 млн. лет. Это были очень приблизительные подсчеты, и тот факт, что Кельвин получил один и тот же результат, используя два разных метода, говорит о том, что он наверняка в чем-то сжульничал. Однако метод расчета возраста Солнца заслуживал большего доверия{86}.

Так или иначе, обе эти оценки представляли большую проблему для теории эволюции путем естественного отбора, выдвинутой совместно Чарльзом Дарвином (1809–1882) и Альфредом Расселом Уоллесом (1823–1913) в 1858 году. Временные масштабы эволюции составляют не менее 100 млн. лет. Это несоответствие беспокоило и самого Дарвина, который считал его самой серьезной угрозой своей теории.

Со своей стороны, геологи поддерживали эволюционную гипотезу, оценивая возраст Земли примерно в 2 млрд. лет. Эти разногласия были разрешены только в начале XX века с открытием реакции термоядерного синтеза, благодаря которой Солнце будет светить еще 5 млрд. лет или даже больше. Возраст Земли в настоящее время определен довольно точно с помощью метода радиоизотопного датирования, он составляет 4,54 млрд. лет с возможной погрешностью 1%.

Тем временем наблюдательная астрономия продолжала развиваться. В 1888 году американский астроном Джеймс Килер (1857–1900) использовал гигантский 36-дюймовый телескоп-рефрактор (телескоп на основе линзы), установленный в Ликской обсерватории на горе Гамильтон, штат Калифорния, для наблюдения промежутков между кольцами Сатурна.

На меньшем склоне Килер установил 36-дюймовый телескоп-рефлектор. В то время ньютоновские зеркальные телескопы только начали появляться в горных обсерваториях. Следствием этого стал значительный рост возможностей, в особенности в области спектроскопии, которая с устранением сферической аберрации, характерной для телескопов на основе линзы, шагнула далеко вперед.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука