В 1993 году от Гавайских до Виргинских островов была протянута антенная решетка со сверхдлинными базами (Very Long Baseline Array, VLBA) — 10 радиотелескопов, контролируемых удаленно из Нью-Мексико. Благодаря использованию метода интерферометрии с длинными базами удалось достичь угловой разрешающей способности от 0,17 до 0,22 угловой миллисекунды на 10 длинах волн, от 0,7 до 90 см. С помощью антенной решетки были обнаружены две гигантские черные дыры массой 150 млн. солнечных каждая, расположенных на расстоянии всего 24 световых лет друг от друга! Они находятся в центре галактики 0402+379 в 750 млн. световых лет от Земли.
На самом деле теперь нам известно, что в центре большинства, если не всех крупных галактик находятся черные дыры сверхвысокой массы.
В 1995 году на орбиту была запущена Инфракрасная космическая обсерватория (Infrared Space Observatory, ISO). Она была спроектирована для работы в диапазоне длин волн 1,5–196,8 мкм. С помощью этой обсерватории было проведено 26 тыс. успешных наблюдений, прежде чем она вышла из строя в 1998 году.
Что касается гамма-диапазона, еще в 1967 году спутники «Вела», спроектированные для обнаружения испытаний ядерного оружия на Земле, по счастливой случайности обнаружили однократные всплески гамма-излучения, разбросанные по небу случайным образом. Из-за их яркости большинство ученых сочли, что они исходят изнутри нашей галактики.
В 1991 году в космос запустили гамма-обсерваторию «Комптон». На ее борту находился в том числе инструмент для исследования вспышечных и транзиентных событий (Burstand Transient Source Experiment, BATSE), разработанный для обнаружения и анализа всплесков гамма-излучения. С его помощью было обнаружено всего 2700 всплесков, в среднем по одному в день. Благодаря этим наблюдениям стало понятно, что гамма-всплески берут начало в далеких галактиках, а значит, представляют собой огромные выбросы энергии.
Представители НАСА сообщили, что космический телескоп «Хаббл» обнаружил такой всплески, согласно расчетам, он вызван столкновением двух нейтронных звезд{270}.
Астрономия сверхвысоких энергий
Хотя сигналы, фиксируемые радиотелескопами, обычно описывают как радиоволны, как и любое другое электромагнитное излучение, они состоят из фотонов, то есть из частиц. Энергия фотона
В противоположной области спектра на борту обсерватории «Комптон» работал гамма-телескоп высоких энергий (Energetic Gamma Ray Experiment Telescope, EGRET). Максимальная энергия фотона, доступная ему, составляла 30 ГэВ = 3∙1010 эВ, что соответствует длине волны порядка 10-17 м.
В то время несколько человек, включая меня, стремились пойти еще дальше как в наращивании энергии, так и в типе искомых частиц. В середине 1970-х я участвовал в проекте, в ходе которого предполагалось установить большой детектор на дне океана, на глубине 4,8 км, в районе южного побережья (область Кона) Большого острова Гавайи. Проект получил название DUMAND — Deep Underwater Muonand Neutrino Detector («Глубоководный детектор мюонов и нейтрино»). Целью проекта было открытие целого нового окна[22] во Вселенную путем поиска космических сверхвысокоэнергетических нейтрино с энергией более 1 ТэВ (1012 эВ). Первоначально руководителем проекта был Фредерик Райнес, который в 1995 году разделил с Клайдом Кованом Нобелевскую премию по физике за совместное открытие нейтрино в 1956 году.
Считалось, что теоретически высокоэнергетические нейтрино могут появляться из гигантских источников энергии, существующих в центрах активных галактик (см. описание активных галактик в главе 9). Поскольку они, по-видимому, происходили из более глубоких недр галактик, чем фотоны, мы надеялись, что они дадут нам информацию об этих колоссальных источниках энергии. В 1984 году я опубликовал в «Астрофизическом журнале» статью, в которой доказал, что активные галактики могут при определенных условиях производить сверхвысокоэнергетические нейтрино, доступные наблюдению{271}.
Предложенный метод все еще является основным для всех экспериментов, которые до сих пор проводятся в астрофизике сверхвысоких энергий наряду с экспериментами по распаду протона. Если заряженная частица движется быстрее скорости света в прозрачной среде, такой как вода или воздух (но все же медленнее, чем со скоростью с), она испускает электромагнитную ударную волну, называемую