Долгое время считалось, что каким-то образом несколько убыточных или выигрышных сделок подряд открывают перед трейдером широкие возможности получить прибыль. Популярная легенда утверждает, что последовательность убыточных сделок реально увеличивает вероятность совершения прибыльных сделок. И наоборот: если метод или система дали несколько прибыльных торгов подряд, то возрастает вероятность убыточной сделки. В результате трейдеры перестают заключать сделки до тех пор, пока метод или система не дадут, по крайней мере, несколько убыточных сделок подряд.
Эти легенды порождены разнообразной житейской практикой, однако математически доказать эффективность подобных теорий невозможно, особенно в торговле. В некоторых областях жизни несколько одинаковых исходов подряд действительно могут означать кардинальную перемену ситуации в будущем. Однако для того, чтобы можно было применить математический расчет, необходимы определенные условия. В этой главе проясняется, где и почему такие условия могут быть справедливыми. И, наконец, эта глава описывает возможные соотношения между различными финансовыми инструментами и этой теорией. Хотя никакой математической подоплеки здесь нет, тем не менее существуют некоторые интересные мысли по использованию подобных явлений в реально возникающих торговых ситуациях.
Я подозреваю, что большинство теорий, основанных на эффекте нескольких следующих друг за другом выигрышных и/или проигрышных сделок, проникло в мир торговли из азартных игр. Азартная игра основана на теории полос. Любой профессиональный игрок скажет вам, что невозможно обратить неблагоприятную ситуацию в свою пользу. Таким образом, схемы
Точно так же индустрия казино вкладывает огромные
ТЕОРИЯ ПОЛОС…
Полосы удач и неудач при подбрасывании монеты представляют собой довольно интересное явление. Считается, что после шести под ряд приземлений монеты орлом вверх вероятность, что в седьмой раз выпадет решка, существенно возрастает. Математическое доказательство этой теории ошибочно: 100 процентов делятся на число подбрасываний (плюс единица), а затем полученный результат вычитается из 100 процентов.
Если три раза подряд выпадает решка, то вероятность, что в следующий раз монета упадет орлом наверх, составляет 75%:
100% / 4 = 25%
100% — 25% = 75%
Следовательно, чем больше бросков, тем меньшее число вычитается из 100 процентов. Следуя этой логике, если одна и та же сторона выпадет подряд сто раз, это означает, что вероятность того, что в следующий раз выпадет другая сторона, составляет 100/101= 0,99; 100 -0,99 = 99,01 процента. Если бы это правило соблюдалось в реальности, то мы бы все давно разбогатели, играя в казино!