– AdExchange – рекламные биржи, которые подобно фондовым биржам обрабатывают, размещают рекламные объявления и устанавливают взаимоотношения покупателей и продавцов (рекламодателей – advertisers, тех, кто публикует рекламу).
Например, если компания Coca-Cola захочет запустить кампанию в Интернете, то она обратится к соответствующим медиа-агентствам, те, в свою очередь, разместят заявку на проведение кампании на соответствующей рекламной бирже, а ее уже увидят сервера рекламных агрегаторов и покупателей.
Одна из таких первых бирж была открыта в США в 1996 и называлась DoubleClick. Вначале она работала как application service provider, то есть предоставляла сервисы и приложения для пользователей в виде рекламы. В 1999–2001 годах DoubleClick, обслуживающая и предоставляющая рекламу на тот момент для 11,5 тысяч веб-сайтов, провела серию поглощений компаний, став крупнейшей онлайн-биржей по рекламе. Были куплены несколько быстрорастущих компаний NetGravity и Abacus Direct. Позднее, в 2007 году, Google купил DoubleClick за 3,1 миллиарда долларов, организовав на ее основе полноценную маркетинговую платформу.
В реальном времени покупатели и продавцы взаимодействуют друг с другом для покупки и размещения рекламы в digital-каналах – на сайтах, в мобильных приложениях и поисковых запросах. Основу этого взаимодействия выстраивают как раз данные, собирать которые помогают DMP-платформы. Но DMP-платформы обычно только представляют сторону покупателя (рекламодателя).
Они собирают три типа данных:
– Собственные данные (First party data) – данные пользователя, в том числе персональные и контактные, а также информация о его действиях в digital-канале (мобильное приложение, сайт, поиск и так далее), все это компания собирает сама.
– Данные о маркетинговых активностях (Second party data) – результаты проведения кампаний, информация по откликам, конверсии, а также поведенческих факторах, которая компания может купить у других источников, где был пользователь. Этакий аналог собственных данных, которые купили у другой компании.
– Данные третьих лиц (Third party data) – сегменты и аналитика, которую предоставляют специальные провайдеры данных, благодаря синхронизации через cookie с различными поставщиками данных.
Часто маркетинговые кампании проводятся с участием CRM (Customer Relationship Management – системы управления взаимоотношениями с клиентами). Поэтому DMP и CRM иногда путают. Однако, DMP и CRM не равны. Маркетинговая компания InBrief выделила ключевые отличия платформ друг от друга:
DMP используется в основном для привлечения новых клиентов и расширения уже существующей клиентской базы за счет look-alike моделирования (то есть поиска групп клиентов, похожих на существующие).
На DMP могут собираться все типы данных.
Персональные данные внутри системы максимально отделяются от остальных. Это делается из-за законодательных ограничений.
DMP разрабатываются по большей части для взаимодействия с рекламными сетями.
Принцип работы заключается в поддержании большой cookie-базы с анализом уже «встроенных» аудиторий, чтобы найти максимальное соответствие для рекламной или маркетинговой кампании.
CRM используется преимущественно для удержания потребителей и развития уже существующей базы клиентов (например, для увеличения активности во время промо-акций, числа покупок в чеке и так далее).
Собираются преимущественно first- и second party данные.
Потребителям присваивается уникальный ID, создается и дополняется персональный профиль на основе множества каналов (известных и анонимных), доступ к которому можно использовать для различных целей.
Разрабатывается преимущественно для сбора данных за счет интеграции маркетинговых каналов.
Принцип работы заключается в механизме персонализации с анализом поведения, вовлечения в контент и так далее, в целях дальнейшей предиктивной аналитики (например, где вероятнее «отток» клиентов) и еще большей персонализации.
Согласно данным компании IDC, ежегодный объем прироста мировых данных составляет 16.3 зеттабайта (триллион гигабайтов). К 2025 году этот прирост достигнет отметки в 163 зеттабайта. Тогда будут доступны новые данные для анализа, управления и расчета наиболее подходящего предложения.
Среди новых групп данных есть, например, психографика, нейрофизиология, данные с бытовых устройств (умные холодильники и прочие приборы). Психографика позволит делать умную персонализацию – например, в письме от интернет-магазина будет не только ваше имя, но и привычные вам стиль и лексика.
Умные устройства смогут поставлять много (относительно) честной информации о поведении пользователей. Если ваш умный горшок для цветов уже полгода подает сигналы о том, что цветы в нем засохли, и сайты про садоводство вы больше не посещаете, то рекламу с новыми товарами на эту тему вам, вероятно, могут больше не присылать.
Все это сильно повлияет на существующий ландшафт решений по предоставлению цифровых товаров.