Если обмотка магнита сделана из олова или свинца, то достижимое магнитное поле не очень велико. Обмотка же из ниобия позволяет получить в десятки раз более сильное поле. Но самые современные сверхпроводниковые магниты делаются из соединения ниобия с оловом или цирконием. Оно остается сверхпроводящим до минус 255 градусов, а магнит с такой обмоткой, помещенный в жидкий гелий, дает поле в десятки тысяч эрстед.
Но это, конечно, не предел. Теория, разработанная советскими физиками, лауреатами Ленинской премии Ландау, Абрикосовым, Гинзбургом и Горьковым позволяет сознательно подходить к задаче поиска новых сверхпроводящих сплавов. Она уже вскрыла ряд удивительных свойств сверхпроводящих пленок и позволила по-новому подойти к возможности получения сверхпроводящего состояния при обычных температурах. Впервые эта возможность была перенесена из области мечты в разряд серьезных научных задач американским ученым Литтлом. Он предположил, что некоторые полимеры могут оказаться сверхпроводниками и сохранять это свойство и при высоких температурах. Но расчеты Литтла были недостаточно убедительными. Лишь впоследствии молодые физики Ю.П. Бычков, Л.П. Горьков и И.Е. Дзялошинский доказали, что линейный сверхпроводник Литтла может существовать. Но пока это еще теория. Впереди много работы. Может быть, более перспективными окажутся не линейные полупроводники, а сверхпроводящие пленки. Во всяком случае, теоретически «теплый» сверхпроводник уже перестал быть монстром. Он стал реальной целью.
По мнению П.Л. Капицы, низкие температуры несут много новых надежд радиотехнике. Он приводит простой и убедительный пример. Радиоприемник на специальных элементах, некоторые части которого охлаждены до температуры жидкого гелия, приобретает такую повышенную чувствительность, как будто мощность радиостанции при этом подскочила в сотни раз. Конечно, гораздо легче проделать такую операцию, чем увеличивать на колоссальную цифру мощность передатчика.
Псевдочастицы
Но, пожалуй, самая впечатляющая находка в стране абсолютного нуля – псевдочастицы. Как сказать о них? О частицах: протонах, нейтронах, электронах и так далее и так далее (число их все время увеличивается!) – рассказать нетрудно. Они есть, они существуют. Каждая имеет свое лицо, свою биографию, у каждой есть паспорт, где указаны и место жительства и род занятий.
Но то, что ученые назвали компромиссным словом «псевдочастицы», не частицы в обычном смысле. Это скорее явления, но явления очень специфические. Да, они не настоящие частицы, но оказывают влияние на окружающий их микромир, как настоящие.
Как самые настоящие частицы, они участвуют в его жизни, взаимодействуют друг с другом. И в то же время... они не существуют. Они живут лишь на бумаге. Но без них ученые не в состоянии справиться со сложными законами, царящими в микромире. Для создания современных теорий физики вынуждены призвать на помощь наряду с реально существующими частицами и псевдочастицы.
И среди них одна из интереснейших – полярон. Эта псевдочастица удивительных свойств родилась в 1946 году под пером киевского физика-теоретика профессора С.И. Пекара.
Как за человеком в солнечный день движется его тень, так за электроном внутри кристаллической решетки движется облако поляризации, образованное его электрическим зарядом.
Встречные атомы, настигнутые облаком, поляризуются им, как бы связываются с электронами невидимыми нитями. Но и электрону эта связь с окружающими его атомами не обходится даром: он становится как бы тяжелее – масса увеличивается в шесть раз. Эту комбинацию электрона с окружающим его состоянием поляризации и назвали поляроном.
В теории такая комбинация электрона с его облаком поляризации казалась вполне ясной, обоснованной, реально существующей. Но как ее обнаружить, какими средствами подтвердить существование?
Полярон стал предметом пристального внимания физиков. Появились десятки исследований, посвященных этой псевдочастице. Но в большинстве это были теоретические изыскания, так как ни одному физику экспериментатору не удалось непосредственно наблюдать полярон в движении.
Иногда эта затея казалась просто безумной. Стоит ли гоняться за тенью, призраком?
Но ленинградские ученые оказались упрямыми. Они решили оттолкнуться от уже известных вещей. Итак, масса полярона в шесть раз больше массы обычного электрона. Если бы можно было непосредственно взвесить тот и другой, мы получили бы самое лучшее доказательство правильности теории. Но облако взвесить нельзя. Тогда, решили физики, надо проделать такой опыт, в котором бы вес электрона и полярона проявился косвенным путем. Такой опыт вскоре и был проделан.
Если поместить крупинки металла в сильное магнитное поле и воздействовать на них радиоволнами, электроны в металле начнут двигаться по окружности, черпая энергию для этого движения у радиоволн. Электроны будут «танцевать» по кругу в определенном ритме. А если на месте электронов окажутся поляроны? Они тяжелее и, очевидно, «затанцуют» по-другому.