Нужно, решили наши герои, создать такие условия, чтобы сами молекулы заставляли друг друга излучать. Нужно создать процесс, который можно уподобить цепной реакции, например реакции горения. Одна частица горючего, воспламенившись, поджигает другие, и в результате в горелке возникает пламя. Это пламя будет бушевать до тех пор, пока подается горючее.
Сделаем так, сказали они, чтобы одна молекула, излучив энергию, заставила этим излучать и другие молекулы. Чтобы все они оказались вынужденными принять участие в этом процессе.
Это можно сделать, но не в свободном пространстве, а заставив молекулы пролетать сквозь полость в куске металла, через своего рода металлическую бочку.
Крикните в пустую бочку — она тотчас ответит вам гулким басом. Пустая бочка из сложных звуков, например из шума, выделяет и подчеркивает в основном басовые тона. Это происходит потому, что воздух, заключенный в бочке, способен к интенсивным колебаниям именно с частотой этих звуков.
Если сделать металлическую коробку, она будет резонировать с радиоволнами примерно так же, как пустая бочка или органная труба со звуком. Такую металлическую полость радиоинженеры называют объемным резонатором. Каждый объемный резонатор откликается только на радиоволны вполне определенных частот. Если в него попадают радиоволны этих частот, поле внутри резонатора усиливается. Тем самым металлическая полость способна накапливать сравнительно большие запасы электромагнитной энергии.
Даже если в резонатор не поступает электромагнитная энергия извне, в нем всегда присутствует слабое электромагнитное поле, создаваемое даже при комнатной температуре тепловым излучением стенок резонатора.
Если заставить молекулы какого-либо газа, находящиеся на высшем энергетическом уровне, пролетать сквозь резонатор, то они попадут под действие слабого электромагнитного поля, создаваемого тепловым излучением нагретых стенок. Хотя это поле и слабо, тем не менее оно заставит молекулы излучать свою энергию за гораздо меньшее время, чем в свободном пространстве. Многие из них успеют излучить радиоволны во время пролета в резонаторе, и излученная энергия останется внутри него. Таким путем резонатор постепенно накапливает энергию, излучаемую пролетающими сквозь него молекулами.
Благодаря этому электромагнитное поле внутри резонатора все более возрастает, а это приводит к еще более сильному воздействию поля на новые молекулы, пролетающие через резонатор.
Если энергия, ежесекундно вносимая в резонатор пучком молекул, больше, чем обычные потери энергии в резонаторе и связанных с ним устройствах, то процесс возрастания поля в резонаторе вполне подобен самовозбуждению обычного лампового генератора. Возрастание поля продолжается до тех пор, пока ровно половина молекул, ежесекундно влетающих в резонатор, не будет излучать в нем свою энергию в виде радиоволн.
Так ученые не только рассортировали нужные молекулы от ненужных, но и заставили их излучать свою энергию внутри объемного резонатора. Так был создан молекулярный генератор радиоволн.
Итак, молекулярный генератор создан. Молекулы отдают свою энергию в виде энергии радиоволн.
Но какова же эта энергия, какова мощность нового прибора? Оказывается, очень невелика. Например, современные радиовещательные станции излучают волны мощностью в сотни тысяч ватт; чтобы зажглась лампочка карманного фонаря, нужна мощность всего в один ватт. Мощность же молекулярного генератора в миллиард раз меньше.
Кому же нужен такой генератор с мощностью комариных крыльев!
Но ценность нового прибора вовсе не в его мощности. Он и не претендует на замену других источников радиоволн. Замечательная его особенность совсем в ином. Он незаменим там, где нужна предельная устойчивость в работе и постоянные по частоте колебания. И в этом ему нет равных. Два таких прибора построенных и пущенных в ход совершенно независимо один от другого, будут излучать настолько постоянные радиоволны, что частота их не различается между собой более чем на одну десятимиллиардную часть. Исследователи уверены, что эта точность может быть увеличена еще в сто раз!
Это значит, что с помощью молекулярного генератора могут быть созданы часы, ход которых практически не нуждается в регулировке и сверке с астрономическими наблюдениями. Проработав без остановки тысячу лет, они разойдутся с астрономическим временем не больше чем на одну секунду.
Конечно, такие точные часы не нужны в повседневной жизни, но ряд областей науки и техники крайне заинтересован в повышении точности измерения времени. В первую очередь в этом нуждаются некоторые отрасли радиотехники, штурманы кораблей и самолетов, астрономы.