Это повторяется неоднократно. Самое удивительное заключается в том, что такое перемещение происходит отнюдь не в результате поворота молекулы. Все происходит так, как если бы атом азота проскакивал между атомами водорода. Но так как атом азота более чем в четыре раза тяжелее, чем три атома водорода, вместе взятые, то правильнее было бы сказать, что треугольник с атомами водорода в его вершинах оказывается то с одной, то с другой стороны атома азота.
Инверсия — таким красивым словом назвали ученые это явление. Инверсионный переход. И вот оказывается, такой переход возможен только в молекулах. Ни в одном из тел крупных размеров он невозможен. То есть не может происходить сам по себе.
Когда кто-нибудь высказывал сомнения по этому поводу, Прохоров легко рассеивал их, предлагая посмотреть на модель молекулы аммиака. Ее можно, говорил он, изготовить из трех маленьких и одного большого шарика, связанных пружинками так, чтобы они образовали пирамиду. Чтобы произвести инверсию, то есть продавить один шарик между тремя остальными, нужно было бы приложить какую-то силу. Сжать пружины не так-то легко. Если же это удастся, то шарик займет новое положение равновесия и отнюдь не будет стремиться возвратиться обратно. Для его возвращения необходимо было бы проделать всю работу сначала.
В молекуле же инверсионные переходы осуществляются сравнительно часто и без всякой видимой причины. Причем они происходят самопроизвольно, без воздействия со стороны.
Тут мы подходим к главному. Эта инверсия оказывается виновницей того, что молекула аммиака способна произвести на свет еще одну серию электромагнитных волн, помимо тех, о которых мы уже говорили. Эти радиоволны длиной около 1,25 сантиметра, расположенные в удобном для работы диапазоне, вполне устраивали ученых. Это было как раз то, что они искали…
…Что же, это конец поисков и нашей истории? О нет! Это начало новых трудностей. Это ответ, который порождает следующий вопрос. Этот этап был только отправной точкой для создания молекулярных генераторов радиоволн.
Если бы молекулы аммиака свободно летали в пустом пространстве, не сталкиваясь между собой и не взаимодействуя с электромагнитными волнами, все они со временем совершили бы вожделенный переход в состояние с меньшей энергией. Ведь такое стремление является законом для всех молекул. И молекулы аммиака тут не составляют исключения.
Но молекулы сталкиваются между собой, взаимодействуют с электромагнитными волнами, поглощая или отдавая энергию. Поэтому среди них есть молекулы и с малым и с большим запасом энергии. Однако первых всегда больше. Поэтому ни один из газов в обычном состоянии не способен излучать радиоволны: молекул-приемников в нем гораздо больше, чем молекул-передатчиков. И вот тут-то и крылся камень преткновения.
Как же привести газ в такое состояние, когда молекул-передатчиков станет больше, чем молекул-приемников? И можно ли сделать так, чтобы молекул, готовых отдать избыток энергии, было больше, чем молекул, стремящихся поглотить ее? Можно ли добиться этого, не нагревая газ, не вводя в него энергию извне?
Мне представляется, что при этих разговорах незримо присутствовал и злорадно улыбался дьявол Максвелла…
Мне представляется и тот момент, когда ученых осенила блестящая догадка: а нужно ли именно так поступать с молекулами? Не лучше ли просто отделить одних от других, слабых от сильных, чтобы они не мешали друг другу? И тут-то наверняка потрясенный дьявол сник и съежился и, как полагается любому носителю скепсиса, приготовился провалиться сквозь землю…
Теперь невозможно установить, кто из них — Басов или Прохоров — первым сказал «эврика». Важно, что эта идея спасла всю проблему. За эту мысль и ухватились ученые. Ведь она могла обернуться мостом между возможным и невозможным, между мечтой и действительностью, между теорией и практикой…
С этого момента Басов и Прохоров почувствовали твердую уверенность — надо избрать этот путь. Другого пока нет.
Но как это осуществить? Разделить можно яблоки: по цвету, величине, по спелости. Собак — по масти, росту; монеты — по стоимости. Разделить можно почти любые видимые предметы. Но как это сделать с невидимыми, абсолютно похожими друг на друга молекулами? Как в одну сторону отогнать слабеньких, в другую — сильных? Когда думаешь об этом, задача кажется просто фантастической, немыслимой — как, чем здесь орудовать?!
Но, как ни странно, эта часть работы вовсе не оказалась самой трудной. Решение было под рукой, в арсенале уже промытого учеными золота истин — бери, используй.
В мае 1952 года на Всесоюзной конференции по радиоспектроскопии Басов рассказал о способе, которым они решили воспользоваться, чтобы отделить молекулы, готовые излучать энергию, от молекул, стремящихся ее поглотить. Он волновался и, стоя на трибуне, незаметно перебирал обычно такими твердыми и точными в работе, а сейчас неуверенными руками страницы доклада, написанного вместе с Прохоровым.