Отечественный стандарт цифровой подписи (ГОСТ Р 34.10–94) вступил в силу в 1995 г. Алгоритм цифровой подписи, определяемый этим стандартом, концептуально близок американскому алгоритму DSA (Digital Signature Algorithm), который был предложен в 1991 г. Национальным институтом стандартов и технологий США для использования в стандарте цифровой подписи DSS (Digital Signature Standard). Алгоритм DSA является развитием алгоритмов цифровой подписи Эль Гамаля и К. Шнорра.
В российском стандарте цифровой подписи используются следующие параметры:
β =αδ mod
Кроме того, этот алгоритм использует однонаправленную хэш-функцию
Первые три параметра
Чтобы подписать некоторое сообщение
1. Абонент А генерирует случайное число
2. Абонент А вычисляет значения:
Если (
Цифровая подпись представляет собой два числа:
3. Абонент А отправляет эти числа, а также открытый текст
4. Абонент Б проверяет полученную подпись, вычисляя:
Если
что приводит к другому уравнению проверки подлинности цифровой подписи.
В американском стандарте цифровой подписи параметр
В 2001 г. в России принят еще один стандарт цифровой подписи – ГОСТ Р 34.10-2001, который базируется на математическом аппарате эллиптических кривых, использует хэш-функцию длиной 256 бит и обладает более высокой криптостойкостью, чем предыдущий стандартный алгоритм цифровой подписи ГОСТ Р 34.11–94.
В США с 2001 г. начал действовать новый стандарт на симметричные блочные криптосистемы – AES (Advanced Encryption Standard), заменивший DES. Алгоритм допускает размеры ключей в 128, 192 и 256 бит.
Управление криптографическими ключами
Любая криптографическая система основана на использовании криптографических ключей. Под
Управление ключами – информационный процесс, сопровождающий жизненный цикл ключей в криптосистеме и включающий реализацию следующих основных функций:
• генерация ключей;
• хранение ключей;
• распределение ключей;
• уничтожение ключей.
Безопасность любого криптографического алгоритма определяется используемым криптографическим ключом. Надежные криптографические ключи должны иметь достаточную длину и случайные значения битов.
В таблице 7 приведены длины ключей симметричной и асимметричной криптосистем, которые обеспечивают одинаковую стойкость к атаке полного перебора.
Для получения ключей используются аппаратные и программные средства генерации случайных значений ключей. Как правило, применяют датчики псевдослучайных чисел. Идеальными генераторами являются устройства на основе «натуральных» (физических) случайных процессов, например на основе
Длины ключей для симметричных и асимметричных криптосистем при одинаковой их криптостойкости
В автоматизированных системах обработки информации со средними требованиями защищенности приемлемы программные генераторы ключей, которые вычисляют последовательность псевдослучайных чисел как сложную функцию от текущего времени и (или) числа, введенного пользователем.
В российском стандарте ГОСТ 28147-89 предусмотрена возможность генерации псевдослучайных чисел весьма высокого качества с периодом
Контрольные вопросы к главе 4
1. Назовите виды информации и дайте им характеристику.
2. Зарисуйте общую схему движения информационных потоков и поясните ее.
3. Какие существуют в электронном пространстве передачи информации приемы достижения террористических целей?
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии