Как в случае «Стрелы», так и в случае БЭСМ разрабатывались мощные, по тогдашним меркам, ЭВМ. Это отвечало положению вещей, но вместе с тем был нарушен естественный порядок разработок от более простого к более сложному. Мощные ЭВМ были нужны лишь для решения относительно ограниченного (опять-таки по тем временам) круга задач. Массовый потребитель нуждался в ЭВМ средней мощности. Именно такую задачу поставил перед своим коллективом И. Брук. В результате к 1956 году была готова ЭВМ М-3. Эта машина содержала всего 770 электронных ламп по сравнению с 4 тысячами БЭСМ и 8 тысячами у «Стрелы». В качестве оперативной памяти использовался магнитный барабан, что также существенно упростило конструкцию.
Машина М-3 послужила прообразом для ряда ЭВМ «Минск», выпускавшихся большими сериями и сыгравших значительную роль в народном хозяйстве нашей страны.
То, что самой распространенной должна стать машина средней мощности, было ясно и Б. Рамееву. После освоения промышленного производства «Стрелы» он переехал в Пензу, где возглавил выпуск ряда ЭВМ «Урал». Первая из них, «Урал-1», содержала 800 электронных ламп и память на магнитном барабане. Затем последовали «Урал-2» и «Урал-4». В начале 1963 года независимо от американской фирмы ИБМ Б. Рамеев разработал основные концепции того, что сегодня называют ЭВМ третьего поколения. Эти концепции были положены в основу новой серии «Уралов»: «Урал-11», «Урал-14», «Урал-16». В течение 60-х годов «Уралы» и «Мински» представляли собой основной тип ЭВМ в нашей стране. Их было выпущено относительно много, и они заложили основу современной информационной индустрии.
Одновременно на Московском заводе САМ, а затем в Рязани выпускались БЭСМ, также в нескольких модификациях, и М-20. Обе эти мощные машины изготовлялись относительно небольшими сериями и предназначались главным образом для решения научных задач.
В конце 60-х и начале 70-х годов наша промышленность перешла на выпуск ЭВМ третьего поколения, получивших название Единой серии (ЕС). Для этой цели был создан Научно-исследовательский центр электронной вычислительной техники (НИЦЭВТ), объединивший большинство организаций, занимавшихся разработкой и выпуском ЭВМ, и периферийного оборудования не только в нашей стране, но и в странах — членах СЭВ. Первым генеральным директором НИЦЭВТа был назначен А. Ларионов, ученик С. Лебедева по Энергетическому институту и сотрудник М. Лесечко по СКБ.
Заканчивая краткий исторический экскурс, попытаемся ответить на такой вопрос. Можно ли указать на всем пути развития вычислительной техники, от первых попыток Паскаля и до наших дней, какие-либо узловые, революционные моменты?
Вряд ли справедливо будет считать таким моментом появление электронных вычислительных машин, то есть переход от реле к электронным лампам. Если бы не насущная потребность, возникшая в середине 40-х годов и объяснявшаяся в первую очередь необходимостью решения оборонных задач, можно было бы вообще не строить ЭВМ на электронных лампах, а подождать появления транзисторов, которые, к слову сказать, к тому времени уже были изобретены. Возможно, кое-кому подобная мысль покажется еретической, но ведь именно так поступили специалисты в технике связи. Автоматические телефонные станции продолжали строить на электромеханических реле, и только в самые последние годы начался переход к электронным АТС. То же самое имело место и в некоторых других отраслях, например в автоматике и телемеханике железнодорожного транспорта.
Если говорить о революционных моментах, то, на наш взгляд, вычислительная техника пережила три такие революции. Первая относится к середине XIX века, когда в проект Бэббиджа были внесены некоторое идеи, реализованные лишь в XX веке. К числу этих идей следует отнести конструктивное разделение арифметического и запоминающего устройства; использование памяти большой емкости (в проекте Бэббиджа рассматривалась память емкостью тысяча чисел по 50 десятичных разрядов); работа с адресами и кодами команд; применение перфокарт для ввода и вывода данных и создание библиотеки программ.
Наиболее фундаментальным достижением Бэббиджа было изобретение команды условного перехода. Команда условного перехода позволяет на каждом шаге вычислений выбирать то или иное продолжение программы в зависимости от результата, полученного на предыдущем шаге. Команда условного перехода позволила полностью автоматизировать процесс вычислений или, рассуждая в кибернетических терминах, осуществить обратную связь между арифметическим устройством и устройством управления ЭВМ.
Второй революционный момент относится к 1946 году, когда американский ученый Джон фон Нейман на основе критического анализа конструкции ЭВМ ЭНИАК предложил новые идеи в организации ЭВМ, главным образом концепцию программы, хранимой в оперативном запоминающем устройстве.