Читаем Беседы об информатике полностью

Теория, предложенная К. Шенноном, упала на исключительно благоприятную почву. В это время, то есть в 40-х годах нашего века, теория вероятностей совершала триумфальное шествие по разным отраслям знаний. Еще в конце XIX века завершилось построение термодинамики. К 30-м годам была окончательно сформулирована квантовая механика, в которой понятие о вероятности состояния занимает одно из центральных мест. И вот теперь — теория связи. Соображения, развитые К. Шенноном, позволили решить много практических задач и, в частности, чрезвычайно важную задачу выделения сигнала на уровне шумов. Применяя шенноновские методы, можно не только обнаруживать, но и исправлять отдельные ошибки, встречающиеся в передаваемых текстах. Справедливости ради скажем, что то же самое мы умеем делать и чисто интуитивно. Например, увидев в конце телеграммы слово «цекую», мы, не задумываясь, читаем его как «целую», не используя при этом никаких теорий.

В чем состояло основное достижение шенноновской теории? С ее помощью была доказана общая возможность выделения сигнала из смеси его с шумом даже в тех случаях, когда мощность шума во много раз превосходит мощность сигнала. Это дало сильный толчок развитию радиолокации, радиоастрономии и других областей науки и техники.

Н. Винер включил шенноновскую теорию информации как составную часть своей кибернетики.

Долой неопределенность!

Средний логарифм вероятностей, или, иначе, величина, называемая энтропией, обладает примечательным свойством. Она принимает максимальное значение, когда все вероятности одинаковы или — применительно к термодинамическим системам, — когда все состояния системы равновероятны. Это послужило поводом для следующей трактовки шенноновской меры количества информации. Рассуждали примерно так.

Система, все состояния которой равновероятны, характеризуется наибольшей степенью неопределенности. Если все состояния равновероятны, нет никаких оснований выделить одно какое-то состояние, предпочесть его другим. Отсюда вывод: чем больше энтропия системы, тем больше степень ее неопределенности. Поступающее сообщение полностью или частично снимает эту неопределенность. Следовательно, количество информации можно измерять тем, насколько понизилась энтропия системы после поступления сообщения. За меру количества информации принимается та же энтропия, но взятая с обратным знаком.

Тут-то и вскрылась самая уязвимая точка шенноновской теории. В чем же дело? Пусть имеются две системы, характеризуемые в данный момент разными значениями энтропии, то есть разной степенью неопределенности. Обе системы получают одно и то же сообщение. Но энтропия их изменяется от полученного сообщения по-разному, в зависимости от их начального состояния. Значит, количество информации в сообщении зависит не от самого сообщения, а от того, кто его получает. Ясно, что в таких условиях не может быть построена никакая самосогласованная физическая теория.

Обычно высказанные соображения иллюстрируют следующим примером. Получено сообщение о том, что температура воздуха равна +20 °C. Вероятность такого значения температуры в наших широтах велика летом и очень мала зимой. В полном соответствии с теорией Шеннона делается вывод, что одно и то же сообщение летом содержит меньше информации, а зимой больше.

Поразительно, что многие воспринимают подобные вещи как нечто само собой разумеющееся. Им даже в голову не приходит, что коли так, то следует создавать не одну, а по меньшей мере две разные теории информации. Одну — зимнюю, другую — летнюю. Подобные рассуждения о температуре эквивалентны тому, как если бы мы считали, что гвоздь является гвоздем только для того, кому он нужен, а для того, кому он не нужен, он вовсе даже и не гвоздь.

Каждый последовательный физик понимает, что если результат измерения температуры несет какую-либо информацию, то количество этой информации зависит от того, насколько тщательно проведены измерения, от точности измерительного прибора, может быть, от других каких-либо условий, но ни в коем случае не от того, кто или что является получателем сообщения о величине температуры.

На этом неприятности не закончились. Мера Шеннона в принципе не накладывает ограничений на количество информации. Вероятность некоторого события может быть сколь угодно близка к единице, и, следовательно, количество информации по Шеннону может быть сколь угодно близко к нулю. Наоборот, вероятность некоторого события может быть сколь угодно близка к нулю, и, естественно, количество информации по Шеннону может быть сколь угодно близко к бесконечности. Но какое действие на реальную физическую систему произведет сообщение, содержащее исчезающе малое количество информации? Иметь дело с физическими величинами, способными обращаться в бесконечность, также крайне неудобно. Бесконечность делится на любое количество частей, и каждая из них все равно остается бесконечностью.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука