Читаем Беседы об атомном ядре полностью

Вещество внутренних слоев звезды за семью печатями упрятано от земных наблюдателей. Доступна только звездная атмосфера. В то же время известно, что синтез ядер идет в самой глубине, там решается судьба звезды. И химический состав ее раскаленной сердцевины может подтвердить или опровергнуть предположения ученых.

Но если пока не удается заглянуть внутрь даже нашего ближайшего соседа — Солнца, то что уж, казалось бы, мечтать об исследовании удаленных звезд. Тем не менее астрофизики обратили внимание на звезды, эволюция которых заканчивалась мощной световой вспышкой, — на сверхновые. Взрыв сверхновой выбрасывал наружу вещество, «перетомившееся» в раскаленной звездной печке.

Так появилась уникальная возможность исследования химического состава глубинного вещества звезды. Важно было сравнить содержание водорода, гелия, углерода и кислорода — основных участников двух термоядерных циклов — в оболочках сверхновых и во всех других космических объектах.

В атмосфере звезд, Солнца и газовых туманностей больше всего водорода; гелия в 5 раз меньше, а углерода, азота и кислорода, соответственно, в 3 тысячи, 8 тысяч и в полторы тысячи раз меньше водорода. В оболочках сверхновых соотношение между этими элементами должно быть другим. А как же иначе? Вещество, миллиарды лет находившееся в недрах звезды, не могло не подвергнуться изменениям. Причем его участие в термоядерных реакциях углеродно-азотного цикла должно было наложить на него вполне определенный отпечаток. Неопровержимой уликой мог стать «недовес» углерода и кислорода, которые интенсивно превращались в ядра азота.

Очень сложный анализ оптических спектров оболочек сверхновых принес чрезвычайно интересную информацию. Относительное содержание химических элементов в выброшенном из недр звезды веществе резко отличалось от обычной распространенности элементов в остальных космических телах. В нем было много атомов гелия, азота и металлов и недоставало водорода, углерода и кислорода.

Это был очень важный результат и для гипотезы об эволюции звезд, и для проблемы происхождения элементов.

Синтез элементов, по-видимому, непрерывно происходит во вселенной. Радиоактивный элемент технеций, который обнаружен в оптических спектрах некоторых звезд, имеет период полураспада всего 220 тысяч лет. Но звезды значительно старше, значит, ядра технеция образуются в процессе нуклеосинтеза, идущего в их недрах.

В настоящее время на Земле новые элементы в заметном количестве не возникают. И тот факт, что долгоживущих тяжелых радиоактивных элементов тем меньше, чем короче период полураспада, наводит на мысль об их образовании в отдаленные времена.

Нестабильные атомные ядра тяжелых элементов, присутствующие ныне на Земле, — эти радиоактивные часы вселенной — аккуратно отмеряют время, отделяющее нас от момента формирования солнечной планетной системы и завершения процесса создания ее вещества.

Ядерная космохронология, опираясь на естественное предположение о том, что все тяжелые элементы в процессе нуклеосинтеза образовались примерно в одинаковом количестве, позволяет сделать очень интересные выводы. Зная время жизни сохранившихся тяжелых ядер и их современную распространенность на Земле, можно совершить увлекательную космологическую прогулку в далекое прошлое к моменту рождения этих нуклонных систем.

Прослеживая в обратном направлении судьбу любого из долгоживущих изотопов урана-238, тория-232 и почти исчезнувшего урана-235, мы уткнемся в одну и ту же точку на шкале времени. Точку, которой соответствует одинаковое максимальное количество самых тяжелых изотопов.

Между нашим временем и этой точкой лежит интервал примерно в 5 миллиардов лет. Но около 5 миллиардов лет и нашей Земле. Видимо, синтез элементов в нашей Галактике закончился (в его наиболее интенсивной фазе) непосредственно перед созданием солнечной системы.

До последнего времени ученые в своих расчетах опирались только на три типа «подопытных» ядер. Но чем разнообразнее материал для исследования, тем достовернее результаты.

Несколько лет назад закончилась одна из волнующих «детективных» научных историй, в результате которой космохронология приобрела еще один экземпляр такого редко встречающегося изотопа-хронометра. В одном из метеоритов было обнаружено совершенно необычное количественное соотношение между четырьмя изотопами благородного газа ксенона. Ученые подозревали, что ядра ксенона появились в метеорите в результате спонтанного деления изотопа плутония-224, который из-за своего «короткого» времени жизни, около 80 миллионов лет, считался давно вымершим на Земле.

Но метеориты образовались в одно время с нашей планетной системой, и если бы удалось найти следы плутония-224 или четко доказать, что уникальное соотношение между изотопами ксенона связано именно с его делением, то можно было бы независимо и более точно установить дату «выплавки» земного вещества.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука