Немецкий математик Феликс Хаусдорф, 1914 год
Основываясь на этой идее и исходя из свойств правильных многоугольников, уже известных в то время, Евдокс доказал, что площадь любой окружности пропорциональна площади квадрата, построенного на ее радиусе. Это означает, что если радиус окружности равен r, то его площадь высчитывается при умножении r2 на число, одинаковое для всех окружностей. В XVIII веке великий швейцарский математик Леонард Эйлер (1707-1783) обозначил это число греческой буквой π, и сегодня мы говорим, что площадь окружности равна π ∙ r2.
Через 100 лет после Евдокса Архимед использовал похожий подход для того, чтобы рассчитать объем сферы, а также площадь и центр тяжести различных фигур, ограниченных кривыми. Ему также удалось получить наиболее точное значение числа π в истории Античности.
Тем не менее методы древнегреческих ученых были недостаточно обобщенными: для каждого вычисления требовалось отдельное построение, которое работало только для конкретного случая. Так, например, способ Евдокса вычислить площадь окружности не мог быть применен к эллипсу, все рассуждения грека относились только к окружности и ни к какой другой фигуре.
С XVI века европейские математики принялись искать общий способ решения вопроса о площади фигур, ограниченных кривыми. Самых выдающихся результатов добились четверо математиков: Иоганн Кеплер (1571-1630), Бонавентура Кавальєри (1598-1647), Рене Декарт (1596-1650) и Пьер де Ферма (1601-1665). В конце XVII века Исаак Ньютон (1643-1727) и Готфрид Лейбниц (1646-1716), опираясь на достижения своих предшественников, независимо друг от друга нашли наконец общий метод расчета площади любой плоской фигуры. Это один из основных инструментов исчисления, и называется он интегральным.