В баллистической теории Ритца воздействия находится не аналитическим, а синтетическим путём: не из дифференциальных уравнений, а как результат интегрирования элементарных воздействий. Поэтому теория Ритца даёт всегда единственное и, при том, — верное решение. Как видели, БТР легко и естественно объясняет законы Кулона, Ампера и Фарадея — то есть она полна и исчерпывающе объясняет всё то, на чём основаны уравнения Максвелла. При этом теория Ритца не нуждается в абстрактных понятиях электрического и магнитного полей, играющих столь важную роль в электродинамике Максвелла. В теории Ритца речь идёт непосредственно о воздействии. Именно поэтому электродинамику Ритца называют ещё бесполевой.
Впрочем, заданные в каждой точке пространства распределения реонов и ареонов по концентрации и скорости их потока в принципе в какой-то мере эквивалентно прежнему понятию поля. Ведь в каждой точке воздействие на ток или на заряд определяется именно этим распределением. Но, в этом случае, мы уже не говорим о поле как о некой абстрактной физической материи. В БТР поле имеет чисто математический смысл, а не смысл особого рода материи. Исконно именно так и вводили поле в математике и физике. Скажем, в аэродинамике поле скоростей, давлений, температур — это всего лишь пространственные распределения данных характеристик. Так же и в электродинамике поле исконно характеризовало лишь пространственное распределение электрических сил, действующих на пробный единичный заряд. Лишь потом физики стали приписывать полю самостоятельный физический смысл, что, разумеется, — неверно. Примерно так же нереальны силовые линии поля, — это чисто математические образы, введённые для удобства описания. Интересно отметить, что Максвелл и Фарадей, подобно полю, считали реальными объектами и силовые линии. Ясно, что при таком подходе они и не могли построить правильную электродинамику. Таким образом, именно Фарадей и Максвелл направили классическую физику по ложному пути, уведя её от наглядных механических моделей и электродинамики Гаусса-Вебера. Теория относительности, да и квантовая механика были лишь следствием, дальнейшим развитием абстрактно-аналитического пути Максвелла.
Итак, если в дальнейшем мы и будем время от времени употреблять термин "электрическое поле", то лишь в математическом смысле, имея в виду силу, действующую на единичный покоящийся заряд. Также для удобства мы будем в расчётах пользоваться привычными всем обозначениями полей