Читаем Баллистическая теория Ритца и картина мироздания полностью

Но вернёмся к более адекватной и естественной теории Ритца. Постоянная скорость испускания реонов — это не единственное, что БТР должна объяснить. Возникает более серьёзная проблема. БТР утверждает, что реоны — это энергоносители электрического поля. Кроме того, это, по-видимому, ещё и тот строительный материал, из которого сложены электроны. Но если это так, и электрон испускает реоны в процессе распада, то он обязан терять массу, подобно распадающимся ядрам того же урана. А между тем, как показывает опыт, электрон — это стабильная частица, имеющая постоянную массу. Существовало, правда, предположение, высказанное Дираком, что масса электрона может медленно уменьшаться, и эксперименты порой, казалось, даже подтверждали это. Быть может, масса терялась именно за счёт испускания реонов, уносящих каждый ничтожную в сравнении с электроном массу?

Попробуем рассчитать, насколько быстро электрон должен терять свою массу. В этом нам поможет соотношение, найденное в предыдущем разделе (§ 1.4). А именно:

r/c=(4M/m)/N.

Напомним, здесь: r — это радиус электрона, c — скорость света, M — масса электрона, m — масса испущенного им реона, N — число реонов, испускаемых электроном в единицу времени. Смысл этого выражения легко понять. В левой части стоит время, за которое свет проходит расстояние, равное радиусу электрона: r/c=(2,8·10-15)/(3·108)≈10-23 секунды. А в правой — учетверённое число реонов, содержащихся в электроне, делённое на частоту их испускания. Фактически по порядку величины — это время, за которое электрон потеряет всю массу, израсходует весь свой заряд, запас реонов, словно автомат, расстрелявший обойму. Выходит, электрон полностью распадётся за время порядка 10-23 секунды. А между тем электроны не только не исчезают за столь краткое время, но не теряют в весе и за много большие времена.

Почему же постоянная утечка реонов с электрона не вызывает постепенную утрату им массы и энергии? Каким образом реоны могут течь из электрона неиссякаемым потоком?

По-видимому, дело в том, что электрон не только испускает, но и поглощает реоны, испущенные другими зарядами. Происходит постоянный обмен частицами. Предположив это, Ритц высказал впервые идею обменного взаимодействия, принятую поздней физикой, скажем, — в квантовой электродинамике (КЭД). Если применить образный язык древних атомистов, называвших микрочастицы семенами вещей, зёрнами материи (за их стандартные малые размеры, многочисленность и функцию первоосновы), то электрон, разбрасывающий реоны, подобен растению, скажем, — одуванчику, рассеивающему по всем направлениям споры, семена, дающие начало новым растениям, так же как реоны дают продолжение жизни другим электронам.

В процессе обмена реонами к электрону, взамен ушедших, со всех сторон приходят новые реоны. Бесчисленные электроны, разбросанные по бескрайним просторам Вселенной, своими поперечниками рано или поздно закроют собой окружающую электрон сферу некого, пусть и очень большого, радиуса R (Рис. 6). Тогда число электронов на сфере

P=4πR2/πr2.

От каждого электрона сферы к центральному электрону приходит ежесекундно Nr2/4R2 реонов (§ 1.4). Значит, в сумме со всей сферы к электрону придёт PNr2/4R2=N реонов. То есть электрон поглощает в единицу времени ровно столько реонов, сколько теряет. Всё как в известном парадоксе Ольберса (§ 2.5, § 2.6), по которому бескрайняя Вселенная со звёздами, не будь поглощения, стала бы подобна окружающему Солнце сферическому зеркалу (Рис. 6), сияющему в каждой точке столь же ярко, возвращая светилу весь излучённый им поток света [81].

Примерно так и все реоны, испущенные электроном, вернутся к нему, будто отражённые, переизлучённые гигантским зеркалом из роя вселенских электронов. Вдобавок и сходятся реоны к электрону в среднем с той же скоростью c, какую имели при вылете. Так что, несмотря на постоянную утечку реонов, электрон сохраняет неизменной и массу, и энергию. Электрон можно уподобить парящей капле жидкости в насыщенном паре (Рис. 9). Капля постоянно испаряется, ежесекундно выбрасывая миллиарды молекул жидкости и теряя вместе с ними массу и энергию. Но параллельно идёт процесс конденсации влаги: новые молекулы пара оседают на капле, возвращая ей массу и энергию. То есть капля пребывает в динамическом равновесии с паром. Вот и электрон параллельно испаряет и конденсирует реоны. Возможно, стандарт массы электрона задан ещё и тем, что он распадается, теряет реоны, лишь достигнув критической массы, подобно тому, как распадаются тяжёлые ядра. Поэтому электрон сохранял бы стандартный критический размер r0, который не мог бы превысить.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука