Читаем Атомы и электроны полностью

Всё это показывает, что радиоактивность принадлежит совершенно особому миру явлений, с которым физики никогда не встречались раньше, — иными словами, что в радиоактивных явлениях действуют совершенно огромные, чудовищные силы, несравнимые со всем, что было известно физике прежде, и, значит, такие же огромные чудовищные силы требуются для того, чтобы управлять радиоактивными явлениями и изменять их естественное течение. Значит, Джон Дальтон был в каком-то смысле прав, хотя правота его и не была абсолютной, а относилась только к некоторому ограниченному кругу явлений: в пределах этого круга явлений атомы действительно неразрушимы и бессмертны, и требуется далеко перейти за пределы этого круга и привести в действие силы совершенно иного порядка («тонкий и сильный агент» Роберта Бойля) для того, чтобы вызвать превращение одних химических элементов в другие. В обыкновенных явлениях, изучаемых в химической лаборатории, атомы действительно никогда не превращаются друг в друга, и ошибка средневековых алхимиков и заключалась в том, что они пытались вызвать это превращение, не располагая «тонким и сильным агентом», а пользуясь лишь обыкновенными силами, которые развиваются при химических реакциях. В тех случаях, когда они утверждали, что им действительно удалось получить золото из других металлов, всё это объяснялось или сознательным надувательством, или экспериментальной ошибкой (например, золото извлекалось из какого-либо химического соединения, содержащего золото, путём замещения золота другим металлом, а неискушённому экспериментатору казалось, что он превращает этот металл в золото).

Как только изобретённый Круксом спинтарископ стал известен остальным физикам, возникла задача счёта альфа-частиц. В спинтарископе Крукса такой счёт невозможен, потому что иголка находится слишком близко от экрана (несколько миллиметров) и в каждый момент на экран сыплется целый дождь альфа-частиц, так что сосчитать их нет никакой возможности. Но если поставить препарат с известным количеством радия достаточно далеко от экрана (но так, чтобы между препаратом и экраном был не воздух, поглощающий альфа-частицы, а безвоздушное пространство), то можно будет сосчитать количество вспышек, загорающихся на каждом квадратном сантиметре поверхности экрана в среднем в течение секунды. Отсюда уже будет легко сосчитать, сколько альфа-частиц испускает препарат по всем направлениям, т. е, узнать в конце концов, сколько альфа-частиц испускает каждый грамм радия в секунду. Знать это число важно по двум причинам: во-первых, если мы затем каким-нибудь способом измерим заряд, уносимый всеми альфа-частицами, которые вылетают в секунду из грамма радия, то мы можем, разделив его на число этих частиц, узнать заряд отдельной альфа-частицы; во-вторых, зная число альфа-частиц, испускаемых в секунду граммом радия или урана, мы тем самым знаем, сколько атомов радия или урана распадается в секунду из общего числа этих атомов в одном грамме, — иными словами, мы сумеем вычислить быстроту распада радия и урана.

В 1908 году немецкий физик Э. Регенер действительно осуществил такой подсчёт числа вспышек. Но этот метод счёта альфа-частиц не очень надёжен, так как он сильно зависит от состояния глаз наблюдателя: глаза очень быстро утомляются, и поэтому подсчёт альфа-частиц по наблюдению вспышек на экране из сернистого цинка требует миллиона предосторожностей. Физики стремились заменить метод вспышек каким-нибудь другим, более объективным (не так сильно зависящим от наблюдателя) и потому более надёжным методом. Таких методов было придумано целых три — один замечательнее другого. Эти три объективных метода обнаружения отдельных альфа-частиц мы по порядку опишем и только после этого перейдём к тем результатам, которые были с помощью этих методов получены.

Наиболее простым по идее способом является фотографический. Ведь альфа-частица вызывает заметное действие не только тогда, когда она падает на флюоресцирующий экран, но и тогда, когда она падает на фотографическую пластинку.

Рис. 15. Треки -частиц: а) наблюдается две группы альфа-частиц, излучаемых торием, с пробегами (в воздухе) в 8,6 и 4,8 см; фото Чедвика; б) альфа-лучи от точечного источника полония; фото Ирэн Жолио-Кюри.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука