Читаем Астрономы наблюдают полностью

Еще в прошлом веке астрономы старались забраться как можно выше, чтобы уменьшить до минимума вредное влияние атмосферы. Напомним, что воздушная оболочка нашей планеты создает существенные помехи при астрономических наблюдениях. Постоянное движение воздушных масс размывает, портит изображения небесных тел и даже в самые небольшие телескопы хорошо видно струйчатое течение воздуха. Из-за этого в наземных условиях приходится применять ограниченные увеличения (как правило, не более чем в несколько сотен раз).

Не в полную силу работают телескопы и по другой причине. Из-за непрозрачности атмосферы почти ко всем электромагнитным излучениям с наземных обсерваторий мы исследуем Вселенную сквозь две узкие «щели» — видимого, света и «радиоокно».

На вершинах гор воздух чище, спокойнее и если к тому же для горной обсерватории выбрано место с хорошим астроклиматом (в частности, с большим количеством ясных дней в году), условия для изучения Вселенной становятся вполне благоприятными. По этой причине еще с конца прошлого века все крупные астрономические обсерватории сооружаются на вершинах гор или на высоких плоскогорьях.

Но так уж устроен человек, что он не способен навсегда удовлетвориться достигнутым. Еще более века назад, в 1870 году французский исследователь Солнца Ж. Жансен, основавший обсерваторию на вершине Монблана, продолжил исследования дневного светила с воздушного шара. Так впервые астрономы оторвались от поверхности Земли и двинулись навстречу звездам.

Примеру Жансена последовали и другие ученые, в частности, Д. И. Менделеев, наблюдавший солнечное затмение с воздушного шара. Астрономы, поднявшись над облаками, фотографировали поверхность Солнца, его спектр. Позже с воздушных шаров наблюдали кометы и метеоры.

Когда в обиход прочно вошли самолеты, их также стали использовать для астрономических целей. Особенно распространенными стали полеты по ходу лунной тени во время полных солнечных затмений. Спешащий за тенью самолет продлевал для наблюдателей на его борту полную фазу затмения, в обычных условиях не превышающую семи минут.

После второй мировой войны «баллонная астрономия» (стал употребляться и такой термин) превратилась в одно из перспективных средств изучения Вселенной. Начиная с 1951 года известный французский астроном О. Дольфус совершил ряд высотных полетов на воздушных шарах, сначала в открытой корзине, а затем в герметической гондоле. Его стратостат, на котором в 1969 году Дольфус достиг высоты 13 км, состоял из 105 метеорологических шаров, каждый из которых имел диаметр 183 см. Дольфусу удалось сфотографировать спектр Венеры и найти в составе ее атмосферы водяные пары.

Примеру Дольфуса последовали американские ученые. Астроном М. Шварцшильд в 1957 году начал серию запусков стратостатов с астрономическими приборами, но без человека на борту (рис. 46). Его «Стратоскоп-2» взлетел на высоту 24 км и поднял в стратосферу управляемый по радио 36 дюймовый телескоп, равный по диаметру знаменитому Ликскому рефрактору! Кстати сказать, на такую же высоту в гондоле стратостата поднялись в 1961 году и два американских исследователя М. Росс и В. Празер.

На высоте в 34 км практически полностью используется разрешающая сила телескопов и становится доступным изучению весь электромагнитный спектр.

Результаты не замедлили сказаться. На тысячах снимков солнечной поверхности необычайно отчетливо и в крупном масштабе виднелись гранулы — вершины бьющих наружу конвективных струй солнечной атмосферы. Отлично различима на снимках тонкая структура солнечных пятен. Со стратостатов были также получены снимки Юпитера, спектры Луны и некоторых планет, звезд и галактик. В инфракрасной части спектра звезды Миры Кита и других холодных звезд удалось заметить полосы воды.

«Стратоскопы» Шварцшильда, наполненные газом, достигали в высоту 198 м (как 65-этажный небоскреб!). После выполнения программы по радиокоманде с Земли гондола с приборами отделялась от стратостата и на парашютах опускалась к исследователям.

Рис. 46. Телескоп, поднимаемый стратостатом.

Французские и швейцарские астрономы с помощью стратостатов впервые получили «ультрафиолетовые» спектры Солнца и сотен звезд. В 1960 году американский стратостат «Короноскоп» доставил на высоту 26 км коронограф и другие приборы для изучения Солнца. То, что раньше удавалось увидеть лишь в моменты полных солнечных затмений, теперь стало доступным изучению в любой день.

Первая советская стратосферная обсерватория отправилась в полет в ноябре 1966 года. Вес ее научной аппаратуры достигал 7,6 тонны! Среди этих приборов был и рефлектор с поперечником 1 м. После этого был произведен еще ряд запусков, итоги которых оказались весьма ценными для науки. На поверхности Солнца открыта неизвестная ранее тонкая структура — множество «пятен», диаметром не более 300 км, существование которых объясняет ряд аномалий в магнитных полях Солнца. Спектрограммы Солнца показали, что дейтерия на Солнце практически нет.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука