Читаем Астрономия полностью

<p>ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА</p>

До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.

Ньютон считал, что сила тяготения между двумя объектами, представляемыми в виде точек, пропорциональна массе каждого объекта и обратной величине квадрата расстояния между двумя объектами. Для двух таких точечных объектов с массой m1 и m2 при расстоянии r он выявил следующее уравнение для силы тяжести F между двумя массами.

где G — коэффициент пропорциональности, который он назвал гравитационной постоянной.

Выбор r2 в уравнении Ньютона вместо r или r3 или какой-либо другой степени r был обусловлен его предыдущими открытиями законов движения. Он показал, что тело, которое находится в постоянном круговом движении, всегда испытывает воздействие силы ускорения, направленной к центру круга и равной квадрату скорости, деленному на радиус. Связав это уравнение со своей формулой для силы тяготения, Ньютон доказал третий закон Кеплера для движения планет. Любая другая степень r в его формуле не могла бы доказать третий закон Кеплера. Следующим шагом Ньютона была попытка распространить свои идеи за пределы точечных объектов. Это оказалось очень трудно, и в конце концов после многих лет исследований он доказал, что закон тяготения можно применить к любым двум объектам при условии, что расстояние в его уравнении является расстоянием между двумя центрами тяжести.

См. также статьи «Ньютон», «Законы Кеплера».

<p>ЗАКОН ХАББЛА</p>

Эдвин Хаббл пользовался телескопом обсерватории Маунт-Уилсон с рефлектором диаметром 2,5 метра. Телескоп был установлен на горе Уилсон в Калифорнии, и Хаббл использовал его для оценки расстояний до двух десятков галактик с известным красным смещением, расположенных в пределах 2 млн. парсеков от Галактики Млечный Путь (1 парсек = 3,26 светового года). Результаты его исследований, опубликованные в 1929 году, показали, что с расстоянием красное смещение увеличивается. При нанесении результатов на диаграмму, связывающую красное смещение и расстояние, стало ясно, что скорость удаления галактики пропорциональна расстоянию до нее: v = Hd. Это взаимоотношение называется законом Хаббла. Величина Н в этом отношении называется постоянной Хаббла.

Итак, скорость отдаления v = Hd, где d — расстояние до галактики.

Мильтон Хьюмасон произвел дальнейшие измерения с использованием телескопа обсерватории. К 1935 году Хаббл и Хьюмасон опубликовали результаты наблюдений для более чем 140 галактик, расположенных на расстоянии более 300 млн. парсеков и отдаляющихся со скоростями свыше 40 000 км/с. Эти результаты подтверждали первоначальное открытие Хаббла. Ученые оценили величину постоянной Хаббла в 160 км/с на миллион световых лет расстояния. Дальнейшие измерения с использованием телескопов большей мощности и более современных детекторов снизили величину постоянной Хаббла до ее нынешнего значения — около 20 км/с на миллион световых лет.

Закон Хаббла является экспериментальным законом, применимым в ограниченном масштабе измерений. Возможные объяснения этого закона были предметом бурной дискуссии в течение полувека после открытия. Теперь принято считать, что закон Хаббла является следствием расширения Вселенной после первичного взрыва, который произошел в период между 10 и 15 млрд. лет назад. Этот взрыв, известный как Большой Взрыв, привел к созданию пространственно-временного континиума. Величина Н имеет очень важное значение, поскольку она используется для оценки возраста Вселенной.

См. также статьи «Большой Взрыв», «Расширение Вселенной», «Красное смещение».

<p>ЗВЕЗДНАЯ ВЕЛИЧИНА</p>

Считается, что наша нынешняя система классификации звезд по их блеску была создана во II веке до нашей эры Гиппархом, который разделил звезды на 6 категорий согласно их яркости.

Перейти на страницу:

Все книги серии 101 ключевая идея

Эволюция
Эволюция

Цель этой книги — доступным и увлекательным образом познакомить читателя с эволюцией. Здесь объясняется 101 ключевой термин, часто встречающийся в литературе по данной отрасли знаний. Для удобства статьи идут в алфавитном порядке. Причем от читателя почти не требуется никаких специальных знаний или подготовки. Книга будет полезна для всех: и для широкого круга читателей, и для тех, кто готовится к поступлению в высшие учебные заведения, и для тех, кто уже в них учится.Книги этой серии совмещают в себе лучшие стороны и учебника, и словаря. Их вовсе не обязательно читать от корки до корки и в строго определенном порядке. Обращайтесь к ним, когда нужно узнать значение того или иного понятия, и вы найдете краткое, но содержательное его описание, которое, без сомнения, поможет вам выполнить задание или написать доклад. Материал в книгах излагается четко, с тщательным подбором необходимых научных терминов.Итак, если вам потребуется быстро и без больших затрат получить сведения по какой — либо теме — воспользуйтесь книгами данной серии! Желаем удачи! Пол Оливер, издатель серии

Millenarium , Александр Мун , Дженкинс Мортон , Родион Александрович Вишняков , Станислав Е. Козырецкий , Стивен М. Бакстер

Фантастика / Справочники / Попаданцы / Фантастика: прочее / Биология / Образование и наука / Образовательная литература / Словари и Энциклопедии
Астрономия
Астрономия

Астрономия — сплав физики, математики и бездонной красоты звездного неба — не одно столетие вдохновляла человечество на осознание своего места во Вселенной, на поиски и открытия. Эта обширная область науки обладает собственным языком, который, однако, может освоить и человек, не имеющий специального образования. В этой книге в доступной форме дано краткое описание основополагающих идей астрономии, а также современные принципы и факты, необходимые для всех, кто хочет узнать как можно больше о ночном небе. Вы узнаете о черных дырах и гравитационных линзах, о пульсарах, квазарах и многом другом, что поражает воображение, заставляя людей с пристальным интересом всматриваться в небеса. Статьи расположены в алфавитном порядке.Книга предназначена для широкого круга читателей, а также для учащихся школ и вузов.

Гай Юлий Гигин , Джим Брейтот , Сергей Юрьевич Афонькин

Энциклопедии / Античная литература / Прочая детская литература / Прочая научная литература / Книги Для Детей / Образование и наука / Словари и Энциклопедии

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии