Рис. 1.13. Атмосфера Плутона. Справа усилен контраст. Фото: «New Horizons».
А вот еще один замечательный пример — покрытие Солнца Сатурном (рис. 1.14). Обычно мы видим Сатурн так, как в верхней части картинки, когда он вблизи противостояния с Солнцем. Лучи Солнца освещают далекую планету «в лоб», и мы видим ее анфас. Мы давно знали о существовании этого красивого ободка — кольца Сатурна — и всегда думали, что между ним и планетой пустота — ничего нет. Когда первый искусственный спутник Сатурна «Кассини» (NASA) залетел за ночную сторону планеты, мы увидели, что между внутренним краем наблюдаемого с Земли кольца и планетой, напротив, довольно много вещества и что оно тянется до самой атмосферы. То, что это вещество незаметно в отраженном свете, но видно в рассеянном свете при контровом освещении, свидетельствует, что это очень мелкие частицы, размер которых сравним с длиной волны света. Такие частицы, как известно, плохо отражают свет, но эффективно рассеивают его вперед, по ходу падающего на них излучения, и немного в сторону. Поэтому в отраженном свете они почти не видны, а при контровом освещении отчетливо проявляются.
Рис. 1.14. Вверху: Сатурн в прямом освещении солнечными лучами, каким мы видим его от Земли с помощью космического телескопа «Хаббл» (NASA). Внизу: Сатурн в контровом освещении (т. е. Солнце располагается за диском планеты), сфотографированный зондом «Кассини» (NASA). На нижнем фото контраст и яркость усилены, чтобы лучше были видны внешние кольца G и E. В делении Кассини (темной «щели» между двумя яркими кольцами А и В, видимыми с Земли) и внутри яркого кольца B движутся мелкие и довольно темные частицы, которые плохо отражают свет, но хорошо рассеивают его вперед, поэтому они видны только в контровом освещении и остаются незаметными при наблюдении со стороны Солнца и Земли.
Пока непонятно, каким образом в кольце происходит сепарация частиц вещества по их размеру и почему мелкие частицы оказались ближе к планете. Простая физическая логика подсказывает, что должно быть наоборот: вблизи границы атмосферы планеты лучше сохраняются крупные частицы, поскольку у них отношение площади сечения к массе меньше, а значит, они слабее тормозятся в верхних слоях атмосферы. В природе же все оказалось не так.
Эту новую информацию о кольцах Сатурна мы получили именно благодаря тому, что использовали ситуацию затмения (покрытия) как прибор для исследования. Контровое освещение выявило много новых деталей в структуре колец.
Лунные затмения
Теперь мы вернемся к лунным и солнечным затмениям. Каждое небесное тело, освещенное Солнцем, отбрасывает сужающийся конус тени и расширяющийся конус полутени. Тень — это область пространства, попадая в которую наблюдатель не видит поверхность Солнца; в области полутени он видит часть поверхности Солнца. В соответствии с этим лунные затмения делят на теневые и полутеневые. В первом случае хотя бы часть лунного диска проходит через область земной тени, во втором случае — через область полутени. В обоих случаях затмение может быть полным или частным, в зависимости от того, полный диск Луны скрывается в земной тени (полутени) или только его часть. То же и с Солнцем: если наблюдатель попадает в тень Луны, он видит полное солнечное затмение, если в полутень — частное. Полное затмение Солнца не заметить нельзя: днем на несколько минут наступает почти ночная темнота. Но неглубокое частное затмение Солнца, если заранее о нем не знать, вполне можно не заметить. То же и с лунными затмениями: теневое затмение Луны выглядит эффектно, а полутеневое — невзрачно и почти незаметно.
Рис. 1.15. Схема солнечного и лунного затмений. Принципиальная разница между ними состоит в том, что лунная тень покрывает малую часть земной поверхности, а земная тень полностью скрывает Луну от солнечного света.
Длительность лунного затмения зависит от того, насколько глубоко в земную тень проникает Луна. Самые длительные затмения — центральные, когда Луна проходит через центр земной тени. При этом полное теневое затмение продолжается около 2 часов.