Читаем Архитектура операционной системы UNIX полностью

Рассмотрим приведенную на Рисунке 7.4 программу, которая представляет собой пример разделения доступа к файлу при исполнении функции fork. Пользователю следует передавать этой программе два параметра — имя существующего файла и имя создаваемого файла. Процесс открывает существующий файл, создает новый файл и — при условии отсутствия ошибок — порождает новый процесс. Внутри программы ядро делает копию контекста родительского процесса для порожденного, при этом родительский процесс исполняется в одном адресном пространстве, а порожденный — в другом. Каждый из процессов может работать со своими собственными копиями глобальных переменных fdrd, fdwt и c, а также со своими собственными копиями стековых переменных argc и argv, но ни один из них не может обращаться к переменным другого процесса. Тем не менее, при выполнении функции fork ядро делает копию адресного пространства первого процесса для второго, и порожденный процесс, таким образом, наследует доступ к файлам родительского (то есть к файлам, им ранее открытым и созданным) с правом использования тех же самых дескрипторов.

Родительский и порожденный процессы независимо друг от друга, конечно, вызывают функцию rdwrt и в цикле считывают по одному байту информацию из исходного файла и переписывают ее в файл вывода. Функция rdwrt возвращает управление, когда при считывании обнаруживается конец файла. Ядро перед тем уже увеличило значения счетчиков ссылок на исходный и результирующий файлы в таблице файлов, и дескрипторы, используемые в обоих процессах, адресуют к одним и тем же строкам в таблице. Таким образом, дескрипторы fdrd в том и в другом процессах указывают на запись в таблице файлов, соответствующую исходному файлу, а дескрипторы, подставляемые в качестве fdwt, — на запись, соответствующую результирующему файлу (файлу вывода). Поэтому оба процесса никогда не обратятся вместе на чтение или запись к одному и тому же адресу, вычисляемому с помощью смещения внутри файла, поскольку ядро смещает внутрифайловые указатели после каждой операции чтения или записи. Несмотря на то, что, казалось бы, из-за того, что процессы распределяют между собой рабочую нагрузку, они копируют исходный файл в два раза быстрее, содержимое результирующего файла зависит от очередности, в которой ядро запускает процессы. Если ядро запускает процессы так, что они исполняют системные функции попеременно (чередуя и спаренные вызовы функций read-write), содержимое результирующего файла будет совпадать с содержимым исходного файла. Рассмотрим, однако, случай, когда процессы собираются считать из исходного файла последовательность из двух символов «ab». Предположим, что родительский процесс считал символ «a», но не успел записать его, так как ядро переключилось на контекст порожденного процесса. Если порожденный процесс считывает символ «b» и записывает его в результирующий файл до возобновления родительского процесса, строка «ab» в результирующем файле будет иметь вид «ba». Ядро не гарантирует согласование темпов выполнения процессов.

#include ‹fcntl.h›

int fdrd, fdwt;

char c;

main(argc, argv)

int argc;

char *argv[];

{

 if (argc != 3) exit(1);

 if ((fdrd = open(argv[1], O_RDONLY)) == -1) exit(1);

 if ((fdwt = creat(argv[2], 0666)) == -1) exit(1);

 fork; /* оба процесса исполняют одну и ту же программу */

 rdwrt;

 exit(0);

}

rdwrt {

 for(;;) {

  if (read(fdrd, &c,1) != 1)  return;

   write(fdwt, &c,1);

 }

}

Рисунок 7.4. Программа, в которой родительский и порожденный процессы разделяют доступ к файлу

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
1001 совет по обустройству компьютера
1001 совет по обустройству компьютера

В книге собраны и обобщены советы по решению различных проблем, которые рано или поздно возникают при эксплуатации как экономичных нетбуков, так и современных настольных моделей. Все приведенные рецепты опробованы на практике и разбиты по темам: аппаратные средства персональных компьютеров, компьютерные сети и подключение к Интернету, установка, настройка и ремонт ОС Windows, работа в Интернете, защита от вирусов. Рассмотрены не только готовые решения внезапно возникающих проблем, но и ответы на многие вопросы, которые возникают еще до покупки компьютера. Приведен необходимый минимум технических сведений, позволяющий принять осознанное решение.Компакт-диск прилагается только к печатному изданию книги.

Юрий Всеволодович Ревич

Программирование, программы, базы данных / Интернет / Компьютерное «железо» / ОС и Сети / Программное обеспечение / Книги по IT