Планета М обращается вокруг Солнца С по окружности, которая по отношению к Земле О является эксцентром. То же движение можно представить в виде движения планеты М по эпициклу с центром А, который обращается по окружности с центром О (деференту)
Согласно этой гипотезе движение "верхних" планет можно описать, закрепив их на вращающихся сферах, центры которых обращаются вокруг Земли. Но в отличие от эпициклов Меркурия и Венеры, центром которых было Солнце, центры эпициклов остальных планет оказывались лишь математическими точками (рис. 4).
Рис. 4. Эпициклическая система мира
Этой схеме суждено было сыграть в истории астрономии огромную роль, так как именно ее положил в основу своей системы мира Клавдий Птолемей.
Создание основных моделей мира в эпоху Архимеда было закончено. Настало время наблюдений, уточнений схем, перехода от качественных оценок к получению количественных результатов. Через полстолетия после Архимеда Гиппарх сумел описать неравномерность скорости движения Солнца, предположив, что это движение совершается по эксцентрической орбите. Его работу использовал Птолемей, построивший удивительно точную и удобную для вычислений систему, в которой комбинация эпициклических и эксцентрических равномерных вращений описывала изменение скорости небесных тел на разных участках траектории не только качественно, но и количественно.
Система Птолемея была венцом античной астрономии. Прекрасное совпадение этой расчетной модели с данными наблюдений и большие возможности для уточнения объясняют ее долгую жизнь. Окончательно вытеснила ее только современная система, предложенная в XVII в. Иоганном Кеплером.
Но вернемся к работе Архимеда "Псаммит".
Для расчета расстояния до Солнца Архимеду надо было знать видимый угловой диаметр Солнца, и он описывает методику своих измерений. Это описание - очень редкий в сохранившейся античной литературе пример измерения с нахождением поправки на неточность наблюдений. Архимед пишет: "Аристарх нашел, что диаметр видимого диска Солнца составляет приблизительно семьсот двадцатую часть круга зодиака; в моих исследованиях я также пытался способом, изложенным ниже, при помощи инструментов найти угол, в который может вместиться Солнце, если взять вершину в глазу. Получить точное значение этого угла - дело нелегкое, потому что ни глаз, ни руки, ни приборы, при помощи которых производится отсчет, не обеспечивают достаточной точности".
Это очень важное замечание. Греческие астрономы и математики той эпохи при замечательном остроумии построений и расчетов не придавали должного значения точности наблюдений. Методику своих измерений Архимед описывает так: "Поместив длинную линейку на отвесную подставку, расположенную в месте, откуда я предполагал наблюдать восходящее Солнце, обточив на токарном станке небольшой цилиндр и поставив его отвесно на линейку, я сейчас же после восхода направлял линейку на Солнце, когда оно находится близ горизонта и на него еще можно прямо смотреть, и помещал глаз у конца линейки; при этом помещенный между Солнцем и глазом цилиндр затенял Солнце. Отодвигая цилиндр от глаза, я устанавливал его в положение, когда Солнце начинало чуть-чуть появляться с обеих сторон цилиндра, Теперь если смотрящий глаз был как бы точкой и из места на конце линейки, где помещался глаз, были проведены касательные к цилиндру, то угол, заключенный между касательными прямыми, был бы меньше имеющего вершину в глазу угла, в который может вместиться Солнце, так как кое-что от Солнца усматривалось по обе стороны цилиндра; поскольку же глаз нельзя считать смотрящим как бы из одной точки, но из некоторой площадки, то я взял круглую площадку, по величине не меньшую зрачка, и поместил ее на конец линейки". В этом отрывке поражает недоверие ученого к органам чувств и его попытка учесть при измерении размеры зрачка. Архимед уже в то время сознавал, что абсолютной точности при измерении добиться нельзя.
Описав получение значения угла "не большего", чем диск Солнца, он рассказывает о нахождении значения угла "не меньшего": "Если на линейке отодвинуть цилиндр настолько, чтобы он полностью заслонял Солнце, и от конца линейки, где помещался глаз, провести прямые касательные к цилиндру, то угол... будет не меньше угла, в который могло бы вместиться Солнце".
Таким образом, Архимед получил два значения угла - 1/164 и 1/200 доли прямого угла, между которыми находится искомый видимый поперечник Солнца. Если перевести эти значения в наши меры, то получатся углы 35'55" и 27'. Действительный видимый поперечник Солнца (32') лежит в найденных Архимедом пределах, причем ближе к большему значению.