ВЫПУКЛЫЙ РИСК [ПОСЛЕ КАКОГО-ТО УРОВНЯ] -> ЛЮБИТ ПЕРЕМЕНЧИВОСТЬ [ДО КАКОЙ-ТО ТОЧКИ]
(переменчивость можно заменить другими членами семейства беспорядка), и
ВОГНУТЫЙ РИСК -> НЕ ЛЮБИТ ПЕРЕМЕНЧИВОСТИ
Распознавание хрупкости
Временной ряд
Рис. 20. Как хрупкое меняется со временем: два типа хрупкости. Репрезентативный ряд. На горизонтальной оси отображается время, на вертикальной – изменение какой-то величины. Эта величина может обозначать что угодно: здоровье, богатство, ваше счастье и т. д. Очень долго она может меняться незначительно или не меняться вообще, иногда изменение может быть катастрофическим. Неопределенность бьет очень чувствительно. Потери могут возникать в любой момент и превысить сумму прежних приобретений. Тип 2 (слева) и тип 1 (справа) отличаются тем, что тип 2 от неопределенности только страдает, почти ничего не приобретая, а тип 1 может вас сказочно обогатить.
Рис. 21. Неуязвимое (но не антихрупкое) (слева): величина все время меняется незначительно или не меняется вообще. Значительных скачков не бывает. Антихрупкая система (справа): благодаря неопределенности мы приобретаем куда больше, чем теряем, – полная противоположность первому графику на рис. 20.
Пространство вероятностей
Рис. 22. На горизонтальной оси отображается отдача, на вертикальной – вероятность этой отдачи. Неуязвимое: малая положительная и отрицательная отдача. Хрупкое (тип 1, очень редкий): отдача может быть как большой положительной, так и большой отрицательной. Почему это редкий тип? Подобная симметрия очень, очень, очень редко встречается на практике, однако статистические распределения обычно упрощают реальность именно до такого графика. Хрупкое (тип 2): невероятно большие потери (часто они скрыты и игнорируются), маленькие приобретения. Катастрофический неблагоприятный исход (слева) куда вероятнее благоприятного, потому что левая сторона тоньше правой. Антихрупкое: большие приобретения, маленькие потери. Благоприятный исход куда вероятнее неблагоприятного (последний может быть вообще невозможен). Правый «хвост», соответствующий благоприятному исходу, толще левого.
Таблица 9. Четыре различных класса отдачи
У хрупкости толстый левый хвост, а значит, она чувствительна к пертурбациям с левой стороны распределения вероятностей.
Рис. 23. Определение хрупкости (левый график). Хрупкость – это затененная область, увеличение массы левого хвоста до некоторого уровня К рабочей переменной в ответ на любое изменение параметра исходной переменной, т. е. это по большей части «переменчивость» или что-то чуть более определенное. Мы относим все такие изменения к s-, о чем будет сказано ниже в разделе с примечаниями (где я ухитрился спрятать уравнения).