На рис. 18 показано, сколь чудовищно велико может быть число потенциальных ложных взаимосвязей. Идея проста. Если я работаю с набором из 200 случайных переменных, совершенно не зависящих друг от друга, почти невозможно не обнаружить высокую корреляцию на уровне, скажем, 30 процентов, однако эта корреляция будет абсолютно ложной. Есть методики, позволяющие контролировать избирательность (скажем, поправка Бонферрони), но даже они не останавливают злоумышленников – как регулирование не останавливает инсайдеров, которые наживаются на системе. Вот почему за двенадцать с чем-то лет с тех пор, как мы расшифровали геном человека, генетики не добились никаких существенных результатов. Я не говорю, что данные не содержат важной информации; беда в том, что искать ее – все равно что искать иголку в стогу сена.
Искажены могут быть даже сами эксперименты: у исследователя имеется стимул отбирать лишь то, что отвечает его задачам, и скрывать неудачи. Ученый может также сформулировать гипотезу по итогам эксперимента, то есть подогнать ее под эксперимент. Впрочем, тут отклонение не столь велико, как в первом случае.
Эффект «одураченных данными» проявляется все шире. Есть отвратительный феномен «изобилия данных», когда ученые отбирают их в промышленных масштабах. Новое время в избытке обеспечивает нас переменными (и дает слишком мало данных по каждой переменной), так что ложные взаимосвязи множатся куда быстрее истинных, ведь шум обладает выпуклой природой, а важная информация – вогнутой.
По сути, данные могут поставлять нам только знание а-ля
Трагедия в том, что очень трудно получить финансирование, чтобы воспроизвести – и опровергнуть – уже проведенные исследования. Но даже если деньги найдутся, сложно найти тех, кто за это взялся бы: все понимают, что воспроизводя чужие опыты, героем не стать. В итоге мы не можем доверять эмпирическим результатам – кроме отрицательных. Я романтик, и мой идеал – английский священник, ученый-любитель, который обдумывает опыты за чаем. Нынешние профессиональные исследователи соревнуются в «поиске» взаимосвязей. Наука не должна быть соревнованием; в ней не должно быть табели о рангах – как мы видим, подобная система неизбежно рушится. Нужно очистить знание от агентской проблемы.
Тирания коллектива
Ошибки, совершаемые коллективно, а не индивидуально, – это признак организованного знания и лучший аргумент против него. Мы только и слышим доводы типа «все это делают» или «другие делают это именно так». Эта закономерность не тривиальна: люди, которые сами по себе ни за что не сделали бы что-то глупое, совершают глупости, объединяясь в группы. Так ученое сообщество с его институциональной структурой вредит науке.
Крис С., докторант из Массачусетского университета, однажды пришел ко мне и сказал, что разделяет мою идею «жирных хвостов» и скепсис в отношении нынешних методов управления риском, но это не поможет ему продолжить карьеру ученого. «Все учат этим методам, все пишут об этом статьи», – сказал он. Другой студент объяснил мне, что хотел бы работать в престижном университете, где моя концепция неуязвимого управления риском не пригодится, потому что «все пользуются другими учебниками». Один раз администрация университета приглашала меня преподавать стандартные методы управления риском, которые я считаю шарлатанством чистой воды (я отказался). Что я должен делать как профессор – обеспечивать студентов работой, приносящей ущерб обществу, или выполнять свой гражданский долг? Если первое, у бизнес-школ и экономической науки серьезные этические проблемы. Только эта порочная система держит экономическую науку на плаву, невзирая на то, что экономисты несут очевидную чушь – и это