Ампер принимает развитую его другом Френелем волновую теорию света. Но Френель не дал полного математического анализа основного понятия своей теории — волновой поверхности. Ампер берется за эту задачу и дает стройное, хотя и несколько сложное решение ее.
Продолжая размышлять над проблемами механики, курс которой Ампер читал в Политехнической школе, он пишет работу об одной из проблем того отдела механики, который изучает вращение твердого тела вокруг какой-либо его оси.
Механика в целом распадается на три отдела в зависимости от того, движение каких тел изучается. Соответственно этому возникает: механика твердого тела, механика жидкостей — гидромеханика, и аэромеханика. Отдел теоретической механики, изучающий движение, связанное с упругостью тел, — колебания и волны, — разросся ввиду своего значения в самостоятельный раздел. Некоторые другие части механики тоже выросли в большие научные области. Все они представляют как бы отпочкования и разветвления общей механики. Механика твердого тела изучает ряд проблем движения твердого тела (например, механического шара или камня), рассматриваемого как единое, неизменное целое. Одной из таких проблем является исследование законов вращения твердого тела вокруг какой-либо его оси. Каждый знает любопытные свойства волчка, практические применения которых имеют весьма большое распространение в виде так называемых жироскопов. Каждый слышал о том, что массивный стальной маховик, приведенный в слишком быстрое вращение, разрывается. Все эти и многие другие вопросы и изучает механика твердого тела. Ее практическое значение очень велико. Она представляет собою один из интереснейших отделов теоретической механики. Решение задач механики твердого тела наталкивается на серьезные математические трудности. Преодоление этих математических трудностей, нахождение наиболее простых и удобных методов решения задач механики твердого тела представляло собою проблему, которой занимались многие крупнейшие ученые-математики. В разработке этих методов принял участие и Ампер, написавший работу, весьма сочувственно встреченную учеными того времени. Отдельные моменты этой об'емистой работы не утратили своего значения и до нашего времени и вошли в состав механики твердого тела как ее необходимый элемент. Затем он печатает большую работу, в которой рассматривает применение в механике нового математического метода — вариационного исчисления, незадолго до того разработанного Эйлером и Лагранжем.
Значение развитых Ампером математических методов было как следует оценено только в середине XIX века, когда начало выясняться огромное значение для механики так называемой «теории преобразования».