дут к концу, если не отказаться от словесных рассуждений в пользу простого исчисления, если не заменить слова неясного и неопределенного смысла определенными символами. После введения их при возникающих противоречиях между двумя философами будет не больше надобности перекрикивать друг друга, чем между двумя бухгалтерами. Не требуется ничего другого, как то, чтобы противники взяли в руки перья, сели за свои конторки и сказали друг другу: давайте-ка вычислять!»
Эта мысль волновала Лейбница давно. «Когда я, будучи еще мальчиком, знакомился с предложениями обычной логики и мне еще была незнакома математика, у меня возникла, не знаю в результате какого мановения, мысль о том, что может быть изобретен анализ понятий, с помощью которого могут быть комбинированы истины и вычисления при помощи чисел», — писал он в конце своей жизни.
Мечты Лейбница начали сбываться лишь в середине прошлого столетия. Ирландский математик Джордж Буль (кстати сказать, отец писательницы Этель Войнич, автора знаменитой книги «Овод») выпускает в свет в Лондоне книгу «Математический анализ логики». Буль доказывает, что правила построения рассуждений можно выразить в математической форме. Доказательство можно вычислять!
В самом деле, каждое высказывание может быть либо истинным, либо ложным. Значит, можно обозначить истинность цифрой 1 и ложность — 0. А затем оказывается, что правила «двоичной арифметики» могут быть применимы и к решению логических задач.
Из простых высказываний можно строить какие угодно сложные, подобно тому как из нуля и единицы можно строить какое угодно большое число. Сумма двух высказываний, истинных или ложных, также должна иметь одно из двух значений — быть либо истинным, либо ложным. Иными словами, иметь значение либо 0, либо 1.
Впрочем, только в этом случае есть небольшое отличие «логической арифметики» от «арифметики двоичной»: 1 + 1 = 1, а не 10. Это понятно, так как в логике нас интересует лишь вопрос о том, истинно или ложно то или иное высказывание.
Зато логическая «таблица умножения» полностью совпадает с «двоичной».
Значение работы Буля, его «алгебры высказываний» часто сравнивают со значением работ гениального русского ученого Н. И. Лобачевского, создателя неевклидовой геометрии. И, как Лобачевского, Буля ждала такая же участь: потребовалось много лет, прежде чем был понят великий революционный смысл трудов этих ученых.
Работы Буля считались бесполезной «математической забавой». Лишь немногие выдающиеся умы того времени понимали, что математические символы в логике так же важны, как буквенные обозначения в алгебре или символические знаки в химии.
Больше того, русский ученый П. С. Эренферст уже в 1910 году сумел предвидеть, какое огромное значение может иметь алгебра Буля для техники. Он указал и конкретный пример ее применения — составление схем проводов телефонной станции.
Но век электроники тогда еще не наступил. И лишь в конце 30-х годов начался настоящий триумф «алгебры Буля». В 1938 году американский математик Клод Шеннон, тогда еще студент Массачусетского технологического института, доказал, что алгебра Буля применима для релейных и переключательных схем — основы автоматики.
Значения истинности и ложности соответствуют состояниям «включено» и «выключено», «единице» и «нулю». Таким образом, появилась возможность поручить электричеству не только вычислять, но и «рассуждать». Вычислительные машины стали «разумными».
«НУЛЬ ПИШЕМ, ОДИН В УМЕ…»
Работой машины обязательно управляет человек… Это казалось таким естественным, таким очевидным, что никому и в голову не приходило другое решение. Человек-оператор управляет машиной, производящей вычисления. Он распоряжается, какие действия арифметики должна она выполнять, устанавливает порядок этих действий. Скажем, велит сначала сложить два миллиарда семьсот миллионов триста восемьдесят тысяч восемьсот двадцать пять с подобным же числом-гигантом; затем прикажет перемножить полученную сумму на самое себя, то есть возвести в квадрат, и т. д.
Сложить или перемножить число-гигант для машины — дело даже не одной секунды, а одной сотой, тысячной, сто тысячной доли секунды. Сто тысяч арифметических операций в секунду могут делать современные машины. И даже такая фантастическая скорость действия для них не предел.
А человек? За секунду нервный импульс проходит два, три, десять, самое лучшее — немногим больше ста метров в секунду. Ничтожная скорость по сравнению с электрическим током!
Нервную клетку нельзя использовать больше, чем сто раз в секунду. А за эту же секунду «нервная клетка» вычислительной машины — электронная лампа — может переключиться, «сработать» миллион и даже больше раз!
Несоответствие в скорости явное. И оно было ясно видно, когда «тихоход»-оператор управлял машиной. Выполнив со сказочной быстротой одну часть программы, машина ждала своего медлительного хозяина, когда он укажет, что делать дальше. То, что экономилось на быстроте машинной работы, тратилось человеком-оператором.
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей