Искусственный интеллект стал особой областью знания. Существуют специальные комитеты, координирующие исследования по этой проблематике, издается несколько журналов, созываются международные конференции. С одной стороны, предмет этих исследований примыкает к теоретической кибернетике, с другой — к технике автоматов и роботов, есть и психофизиологический аспект проблемы. Одно скажу сразу: искусственный интеллект не создан. Векселя, которые выдала кибернетика в начале своего развития, претендуя на решение почти всех интеллектуальных задач, остались неоплаченными. Более того — наметился явный пессимизм во взглядах на саму возможность воспроизвести разум человека. Сошлюсь на книги Дрейфуса. Тем не менее большинство ученых-кибернетиков смотрит в будущее с надеждой, хотя теории интеллекта пока нет и все предлагаемые модели представляют собой воспроизведение частных механизмов мышления. Для того чтобы дать представление о состоянии дела, приведу очень краткую сводку работ последнего времени.
С самого начала основные надежды кибернетики были связаны с моделированием работы мозга. Было ясно, что здесь можно идти двумя путями — моделировать нейронные сети и воспроизводить алгоритмы мышления.
Лучшие результаты по моделированию нейронных сетей были получены в работах школы У. Мак-Каллоха [7]. Выяснилось, однако, что сети из формальных нейронов не способны воспроизводить сложные функции мозга. Неэффективными оказались также попытки использовать такие сети для управления роботами [9]. Большой интерес вызвали работы Ф. Розенблата, который сформулировал ряд принципов нейродинамики мозга и использовал их для построения персептронов — устройств для распознавания образов. Однако строгий анализ, осуществленный М. Минским и С. Пейпертом [8], показал ограниченность существующих здесь возможностей. Таким образом, к началу 70-х гг. общий кризис нейронного подхода стал очевидным.
Одновременно проводились исследования по алгоритмическому моделированию мышления. Оcновные достижения в этой области связаны с именами А. Ньюэла и Г. Саймона [12]. Их работы по созданию GPS (общего решателя проблем) привели к формированию отдельного направления — эвристического программирования, влияние которого на исследования по ИИ прослеживается до сих пор. Однако в целом это направление исчерпало свои возможности уже к началу текущего десятилетия. При этом выяснилось, что оно не позволяет приблизиться к сколько-нибудь общей теории мышления, хотя и может обеспечить решение отдельных прикладных задач.
Кризис обоих направлений привлек внимание к работам, начатым еще в 50-е гг. и связанным с использованием формальных методов для решения сложных, «интеллектуальных» задач (доказательство теорем, игры и т.п.). К этому времени здесь был получен ряд интересных результатов. Среди них следует отметить разработку А. Сэмюэлем [11] программы для игры в шашки, которая до сих пор является одной из лучших игровых программ. Работы этого направления и составили основу нового раздела кибернетики, который занимается проблемой искусственного интеллекта.
В начале 70-х гг. на исследования по ИИ оказывали большое влияние результаты, полученные в области математической логики Дж. Робинсоном. Развитый им метод резольвенций позволил строить мощные процедуры доказательства теорем. Это было использовано для построения нового класса программ, решающих сложные задачи. Наибольшую известность среди них получила разработанная в Стенфордском исследовательском институте программа STRIPS [14], решающая задачи планирования действий робота. Методы математической логики составили также основу теории поиска решений, главные положения которой обобщены в работах Н. Нильсона. Однако использование этих методов для широкого круга задач показало их низкую эффективность, обусловленную в основном большим объемом и громоздкостью соответствующих программ для ЦВМ. Так что к 1975 г. наметилось разочарование и в этом подходе.
Попытки преодолеть трудности, сопутствующие разработке больших программ, привели к появлению новых методов автоматизации программирования и созданию специальных проблемно-ориентированных языков. Большие достижения здесь связаны с работами К. Хьюитта по построению языка PLANNER [15, 16], который послужил основой для целого ряда дальнейших разработок в этом направлении.
Использование новых языков программирования обеспечило прогресс в сравнительно новой для ИИ области — имитации речевого поведения человека. Первые значительные успехи здесь были получены Т. Виноградом [5], разработавшим систему диалогового управления роботом с помощью естественного языка. Начиная с 1973—1975 гг. проблемы естественной речи привлекают все большее число исследователей. Разрабатываются проблемы понимания [13], представления знаний, грамматического анализа и др. Проблема понимания активно исследуется также и в другой области ИИ — распознавания зрительных образов. Широко известны работы М. Минского, развивающего теперь новую теоретическую концепцию восприятия, связанную с представлениями о «системах фреймов».