2—2. а) Толщина пластин стремится к нулю. Допустим4 толщина стала равной диаметру атома. Пластины придется собирать из отдельных атомов.
б) Если толщина пластин 1000 км, тоже придется собирать пластины из отдельных частей.
в) Время изготовления изделия стремится к нулю.
Придется заранее подготовить элементы и собрать изделие, пользуясь какой-то быстродействующей силой.
г) Если на изготовление изделия дано 100 лет, можно использовать медленные естественные процессы, скажем, осаждение частиц из раствора.
д) Стоимость изготовления изделия равна 0. Пластины должны сами собой возникать и соединяться... Как? Может быть, за счет каких-то вредных сил? Тогда мы не только сведем к 0 стоимость изготовления, но и получим бесплатно дополнительный эффект.
е) Если допустимая стоимость очень высока, можно работать в условиях, когда меняются свойства материалов, например, соединять пластинки при обычной температуре, но очень высоком давлении.
Оператор РВС не дал готового решения. Так бывает почти всегда. Смысл применения оператора РВС в том, чтобы расшатать барьеры и тем самым облегчить дальнейшее решение.
Рис. 40. К задаче 13, шаг 3—2.
2—3. Даны два материала — А (легкоплавкий и Б (тугоплавкий). Известными способами трудно получить из этих материалов тонкую «слоёнку».
2—4. а) Материал А, материал Б. б) —
2—5. Материал А. (Он легче плавится, то есть легче изменяется.)
3—1. Материал А сам образует «слоёнку» с материалом Б.
3—2. См. рис. 40.
Теперь видно, что процесс образования «слоёнки» состоит из двух действий. Надо, чтобы лежащие порознь материалы А и Б образовали один общий объем. А затем они должны определенным образом расположиться в этом объеме. Значит, можно уточнить ИКР.
Рис. 41. Окончательный вариант шага 3—2 к задаче 13.
Вот как уточнялся ИКР при решении этой задачи в Азербайджанском общественном институте изобретательского творчества (объектом был взят материал Б).
Слушатель: Материал Б сам влезает в А и упорядоченно располагается в нем.
Преподаватель: Здесь два действия: «влезает» и «упорядоченно располагается» — значит, и две задачи.
Слушатель: Первая легко решается. Чтобы материал Б «влез» в материал А, надо бросить Б в расплавленное А.
Преподаватель: Следовательно, мы можем заново сформулировать ИКР.
Слушатель: Б раздробилось, и частички сами расположились по плоскостям.
Преподаватель: Но здесь снова две задачи — «раздробить» и «расположить по плоскостям».
Слушатель: Раздробить легко. Можно заранее насыпать Б в виде порошка. Окончательная формулировка ИКР: порошок Б сам упорядоченно расположился в расплаве А (рис. 41)... Но если Б — магнитный материал, можно использовать магнитные силы. Они расположат частицы в определенном порядке. Потом расплав застывает — и задача решена.
Преподаватель: А если вещество Б из немагнитного материала?
Подсказки с мест: Использовать оптические силы... акустические... электрические...
Слушатель: Значит, есть следующие силы: электрические, магнитные, оптические, механические, акустические, ядерные...
Подсказка с места: Акустические! Создать в сосуде стоячие волны. Частицы Б соберутся в плоскостях, соответствующих узлам. В пучностях будет только вещество А.
Это соответствует контрольному ответу: «Способ изготовления материалов слоистой структуры с заданным расположением слоев, отличающийся тем, что с целью получения тонкой периодической пространственной структуры взвесь частиц тугоплавкого вещества в расплаве легкоплавкого подвергается воздействию стоячего ультразвукового поля соответствующей частоты с последующим устранением поля и быстрым охлаждением расплава» (авторское свидетельством» 108894).
Ход решения этой задачи интересен тем, что отчетливо показывает механизм анализа. В задаче с большим поисковым полем постепенно уменьшается степень неопределенности, и поисковое поле становится меньше и меньше. В конце концов, все сводится к вопросу: какими силами можно управлять немагнитным порошком, находящимся в жидкой среде? Сложная изобретательская задача превратилась в простую, решающуюся перебором нескольких вариантов.
В контрольном ответе сочетаются уже известные нам приемы (принцип дробления, принцип динамичности) и физический эффект, основанный на применении стоячих волн. Это типичная ситуация: упрощенная задача, полученная в результате анализа часто решается применением того или иного физического эффекта.
Есть изобретательские задачи, решенные только за счет использования физических эффектов и явлений. Вот, например, патент ГДР № 51194: для изменения диаметра дробинок используется влияние электрического поля на поверхностное натяжение жидкого металла; меняя интенсивность поля, управляют поверхностным натяжением, следовательно, и размером капелек, из которых получаются дробинки.
Иногда изобретение непосредственно вытекает из нового открытия. Таковы многочисленные изобретения, основанные на электрогидравлическом эффекте.