Читаем Алгоритм изобретения полностью

В первом случае в условиях задачи присутствовало слово «труба». И хотя нефтепровод не обязательно должен иметь в поперечном сечении форму трубы, но инерция мысли такова, что «сойти с рельсов» трудно, а они ведут в направлении малоперспективном. Как только слово «труба» исчезло из условий задачи, инерция мышления была погашена. В поле зрения сравнительно легко попала простая, но в данном случае новая мысль: нефтепровод не обязательно должен быть трубой.

Изобретателю необходимо учитывать стремление терминологии направлять мысль по привычному руслу. Нужно вести самоконтроль на всех стадиях АРИЗ: следить, чтобы в рассуждение не «просочились» специальные термины. Формулировки, соответствующие каждому шагу, должны быть предельно просты и свободны от технической терминологии.

Практика решения многочисленных задач на семинарах показывает, что лучшие результаты получаются при использовании не специальных терминов, а самых обычных слов. Потом, когда новая идея уже найдена, можно (и нужно) вновь вернуться к точной терминологии.

* * *

Давно подмечено, что многие изобретения были сделаны в три этапа. Сначала изобретатель напряженно и безуспешно ищет решение. Затем, так и не решив задачу, перестает о ней думать. Проходит некоторое время, и вдруг как бы срабатывает некий механизм замедленного действия: «само собой» приходит требуемое решение. Вот, например, что говорил об этом Гельмгольц:

«Каждый раз приходилось сперва всячески переворачивать свою задачу на все лады, так что все ее изгибы и сплетения залегали прочно в голове и могли быть снова пройдены наизусть, без помощи письма. Дойти до этого обыкновенно невозможно без долгой предварительной работы. Затем, когда прошло наступившее утомление, требовался часок полной телесной свежести и чувства спокойного благосостояния — и только тогда приходили хорошие идеи. Часто они являлись утром, при пробуждении, как замечал Гаусс (он установил закон индукции утром, перед вставанием)».

Можно привести еще одни типичный пример. Известный русский бактериолог С. Н. Виноградский долгое время пытался разобраться в физиологии тогда еще не изученных серобактерий. «Я научился, — пишет С. Н. Виноградский, — пичкать их сероводородом, наблюдать, как быстро они наполняются серой и как затем, без сероводорода, сера эта быстро исчезает». Однако открыть механизм работы серобактерий долгое время не удавалось, «Вопрос не двигался с места. Ощущалось некоторое утомление им, и вот, ради отдыха, я стал больше сидеть в химической лаборатории, где занимался весьма скромными аналитическими упражнениями. Шел оттуда как-то домой, к обеду, и, дойдя до набережной, вспомнил сероводородную воду, которая, оставленная в стаканчике на столе, помутнела от выделившейся серы, а потом посветлела от окисления этой серы. И в этот момент, точно подсказанная этим банальным фактом, вдруг выпукло и ярко загорелась в голове мысль, бактерии мои сжигают серу в серную кислоту; затем сразу развернулась в голове вся их физиология. Дальше пошло как по маслу, и в несколько дней работа была закруглена».

Три фазы изобретательского творчества («поиск — выжидание — озарение») проявляются очень отчетливо. Это едва ли не единственная особенность творчества, которую можно часто наблюдать со стороны. Не случайно поэтому трехфазность служит (явно или неявно) исходной точкой для тех «объяснений» творчества, которые легко сводят весь процесс к чему-то одному. Обычно выделяют только последнюю фазу: «вдруг» появляется идея. Другие, наоборот, видят только первую фазу: «Надо искать, пытаться, пробовать...» Наконец, есть еще одно «объяснение» — оно делает упор на вторую фазу: «Надо наблюдать, всматриваться в окружающее, постоянно держать в мыслях задачу — что-нибудь послужит толчком, подскажет решение...»

Теперь, выяснив, как возникает инерция мышления, мы можем объективно разобраться в механике творческого процесса.

Задача ставится в терминах, обладающих инерцией и скрыто подталкивающих мысль в направлении, противоположном тому, где лежат новые идеи. Именно поэтому первая фаза творческого процесса (если он ведется бессистемно) обычно не приводит к решению задачи.

Изобразим условие задачи так:

А ⇄ Б ⇄ В ⇄ Г

Каждая буква может обозначать, например, часть машины, а стрелки между буквами символически указывают на существующую между этими частями связь.

В результате первой фазы творческого процесса исходная формула еще не разрушается. Связи между частями машины лишь слегка ослабляются, расшатываются. Условно это можно записать так:

А ↔ Б ↔ В ↔ Г

Наступает вторая фаза. Человек почти не думает о задаче. Но тут проявляется положительная роль инерции мышления. По инерции расшатанные связи между частями продолжают ослабляться и постепенно совсем рвутся:

А Б В Г

Теперь изобретатель может легко переставлять части, менять характер связи между ними и т. д. В результате (без особого труда) возникает новая формула машины

В ⇄ А ⇄ Г ⇄ Б

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки