«При проектировании машины выяснилось, что повышению ее производительности препятствует сила натяжения нитей (проводов), которая возникает от трения нитей во время их движения о стенки крутильной рамки и приводит к недопустимому растяжению нитей (проводов). С увеличением скорости вращения рамки и ее диаметра увеличивается центробежная сила, прижимающая нити к рамке, а следовательно, и сила трения нитей. Получается заколдованный круг:
С увеличением диаметра и скорости вращения крутильной рамки недопустимо увеличивается центробежная сила, которая приводит в конечном счете к растяжению нитей. С другой стороны, уменьшая диаметр крутильной рамки, можно повысить скорость кручения, но тогда недопустимо уменьшается диаметр приемной катушки, установленной внутри рамки, и, следовательно, длина изготовляемого кабеля.
Явное техническое противоречие!»[32]
В изобретательской практике нередки случаи, когда главное — обнаружить техническое противоречие, а коль скоро оно обнаружено, преодолеть его не представляет труда. Бывает, однако, и так, что ясно видимое техническое противоречие отпугивает изобретателя: нужно совместить несовместимое, а это кажется невозможным!
«Нужно найти способ кручения кабеля на проход, — рассказывает далее Ю. Чиннов, — то есть вынести приемную катушку из вращающейся рамки и закрепить ее на неподвижном основании вне рамки. Такую катушку можно сделать неограниченного диаметра, а кабель — неограниченной длины, и, кроме того, увеличить скорость кручения.
Начальник КБ новой техники Ташкентского кабельного завода предупредил меня, что в этом направлении очень много поработали изобретатели и конструкторы. В конце концов они пришли к выводу, что изобрести способ кручения на проход так же невозможно, как и изобрести вечный двигатель.
Однако я не отказался от мысли справиться с этой задачей. Решил действовать по методике изобретательства...»
Не бойтесь технических противоречий!
Вот одна из простых задач. Решите ее самостоятельно; для этого достаточно четко сформулировать техническое противоречие.
Задача 3
«При взгляде на гоночный автомобиль сразу бросаются в глаза колеса. Они придают машине свирепый вид. А между тем они создают добавочное сопротивление воздуха, снижают максимальную скорость. Даже у обычных легковых автомобилей колеса закрыты обтекаемым капотом. Так почему же колеса гоночных машин не закрыты обтекателями?
На виражах гонщик все время следит за передними колесами. Увидев их положение, он получает первую информацию о направлении движения машины. Теперь предположим, что колеса закрыты крыльями. Повернув руль, гонщик должен смотреть, как пойдет машина, и вмешаться в управление после того, как автомобиль заметно отклонится от намеченного пути. Вот почему автомобили для шоссейных гонок делают без крыльев. Другое дело автомобили, предназначенные для гонок на специально оборудованных треках. Там не нужна поворотливость. И машины закапотированы»[33].
Чтобы решить эту задачу, надо точно найти «несовместимое» и ответить на вопрос: где и что придется изменить для устранения «несовместимости»? Задача относится к гоночным автомобилям. Значит, решение может и не быть рассчитано на массовое и длительное применение.
Диалектика изобретения
Даже формальная логика представляет прежде всего метод для отыскания новых результатов, для перехода от известного к неизвестному; то же самое, только в гораздо более высоком смысле, представляет собой диалектика.
Шаг за шагом
Используя понятия об идеальной машине и технических противоречиях, можно существенно упорядочить процесс решения изобретательской задачи. Идеальная машина помогает определить направление поисков, а техническое противоречие, присущее данной задаче, указывает на препятствие, которое предстоит преодолеть. Однако противоречие подчас бывает довольно хитро спрятано в условиях задачи. К тому же обнаруженное противоречие не исчезает само по себе, приходится изыскивать способы его устранения. Далеко не всегда удается одним броском преодолеть путь от постановки задачи до ее решения. Нужна рациональная тактика, позволяющая шаг за шагом продвигаться к решению задачи. Такую тактику дает алгоритм решения изобретательских задач (АРИЗ).
В следующих главах, углубляя изучение, мы детально рассмотрим отдельные «узлы» алгоритма и на конкретных примерах покажем, как они работают, а пока дадим общий обзор АРИЗ.