Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Мысль о том, что уравнения можно выразить в виде линий, представляла собой радикальное новшество, предложенное Декартом в его книге «La Geometrie». Введение Декартовой системы координат носило революционный характер, потому что в ней соединились до того никак не связанные области: алгебра и геометрия. Впервые оказалось, что два различных раздела знания не только связаны между собой, но и являются альтернативными представлениями друг друга. Одна из задач, которые ставил перед собой Декарт, состояла в том, чтобы сделать и алгебру, и геометрию доступнее для понимания, потому что, как он заметил, взятые по отдельности, «они простираются лишь в области весьма абстрактных вещей, с виду не представляющих никакого практического интереса, — геометрия всегда настолько привязана к исследованию фигур, что понимания в ней невозможно добиться без чрезвычайного напряжения воображения, в то время как алгебра до такой степени подчинена всяческим правилам и числам, что превратилась в запутанное и замутненное искусство, которое подчиняет себе ум, вместо того чтобы быть наукой, способствующей развитию ума». Декарт не питал особой склонности к перенапряжению. Он вошел в историю как любитель позднего вставания, прославившись тем, что предпочитал при всякой возможности оставаться в кровати до полудня.

Выполненное Декартом соединение алгебры и геометрии — это мощный пример взаимодействия между абстрактными идеями и пространственным воображением, и это взаимодействие стало с тех пор постоянным сюжетом в математике. Многие из наиболее впечатляющих доказательств в алгебре — включая доказательство Великой теоремы Ферма — опираются на геометрию. Подобным же образом, получив алгебраическое описание, геометрические задачи, история которых составляет до двух тысяч лет, зажили новой жизнью. Одно из наиболее восхитительных свойств математики как раз и выражается в том, как различные с виду предметы оказываются связаны между собой, что приводит к новым неожиданным открытиям.

В 1649 году Декарт по приглашению шведской королевы Кристины перебрался в Стокгольм, дабы исполнять обязанности ее личного наставника. Королева была ранней пташкой. Необходимость вставать в 5 утра, помноженная на отсутствие привычки к скандинавской зиме, привела к тому, что вскоре после приезда Декарт заболел воспалением легких и умер.

* * *

Одним из наиболее очевидных следствий из Декартова озарения, заключавшегося в том, что уравнения, связывающие x и y, можно выражать в виде линий, было осознание того факта, что различные типы уравнений дают при этом различные типы линий. Мы можем начать их классификацию прямо с наших уравнений.

Уравнения, подобные у = x и у = 3х - 2, содержащие только x и у, всегда дают прямые линии.

Напротив, уравнения, содержащие квадратичные члены — то есть те, которые включают выражения х2 и/или у2, — всегда дают кривые одного из следующих четырех типов: окружность, эллипс, парабола или гипербола.

Тот факт, что всякую окружность, эллипс, параболу и гиперболу, нарисованные на плоскости, можно описать уравнением, квадратичным по x и у, крайне полезен для науки по той причине, что эти кривые присутствуют в реальном мире. Парабола — это траектория объекта, брошенного в воздух (в пренебрежении сопротивлением воздуха и в предположении однородного гравитационного поля). Когда футболист бьет по мячу, летящий мяч тоже описывает параболу. Эллипсы — это кривые, по которым планеты движутся вокруг Солнца, а траектория, по которой движется в течение дня тень, отбрасываемая самым кончиком гномона солнечных часов, — это гипербола.

Рассмотрим следующее квадратичное уравнение, которое на самом деле подобно машине для рисования окружностей и эллипсов:

где а и b — некоторые постоянные. У этой машины два рычажка, один из которых управляет буквой a, а другой — буквой b. Подбирая значения a и b, мы можем по своему желанию нарисовать любую окружность и любой эллипс с центром в точке 0.

Например, когда a совпадает с b, получающееся уравнение описывает окружность радиуса a. Когда а = b = 1, уравнение принимает вид х2 + y2 = 1 и получается окружность радиуса 1 — «единичная окружность», как та, что нарисована слева на рисунке. Если же а и b — различные числа, то уравнение описывает эллипс, который пересекает ось x в точке а и ось у в точке b. Например, кривая справа — это эллипс, для которого а = 3 и b = 2.

В 1818 году французский математик Габриель Лямэ, размышляя над формулой для окружности и эллипса, задался таким вопросом: что будет, если «подкручивать» не значения a и b, а показатели степени?

Эффект оказался восхитительным. Рассмотрим, например, уравнение хn + уn = 1. При n = 2, как мы видели, оно порождает единичную окружность. А вот кривые, получаемые при n = 2, n = 4 и n = 8:

Когда n равно 4, кривая выглядит как окружность, стиснутая при запихивании в квадратный ящик. Ее стороны уплощаются, но остаются четыре скругленных угла. Как будто окружность пытается стать квадратом. Когда n равно 8, получающаяся кривая еще более походит на квадрат.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука