Георг Кантор придумал новый способ осмысления бесконечности, который устранил парадокс Галилея. Вместо того чтобы рассматривать отдельные числа, Кантор рассмотрел группы чисел, которые назвал «множествами». Кардинальное число всякого множества есть число членов в этой группе. Так, {1, 2, 3} — множество с кардинальным числом 3, а {17, 29, 5, 14} — множество с кардинальным числом 4. «Теория множеств» Кантора заставляет сердце биться чаще, когда рассматриваются множества с бесконечным числом членов. Он ввел новый символ для бесконечности — ℵ0 (произносится «алеф-нуль»), используя первую букву древнееврейского алфавита, снабженную нижним индексом, и сказал, что это есть кардинальное число множества натуральных чисел, то есть {1, 2, 3, 4, 5…}. Каждое множество, члены которого можно поставить во взаимно-однозначное соответствие с натуральными числами, также обладает кардинальным числом ℵ0. Таким образом, поскольку имеется взаимно-однозначное соответствие между натуральными числами и их квадратами, множество квадратов {1, 4, 9,16, 25…} имеет кардинальное число ℵ0. Подобным же образом, множество нечетных чисел {1, 3, 5, 7, 9…}, множество простых чисел {2, 3, 5, 7, 11…} и множество чисел, внутри которых содержится 666, то есть {666, 1666, 2666, 3666…}, — все они имеют кардинальное число ℵ0. Если имеется множество с бесконечным числом членов и если возможно пересчитать члены один за другим, так что в конце концов каждый будет посчитан, то кардинальным числом такого множества является ℵ0. По этой причине ℵ0 стал известен как «счетная бесконечность». Причина же, по которой все это представляется столь замечательным, состоит в том, что Кантор показал, что можно двигаться и дальше. Сколь бы большим ни было ℵ0, это сущее дитя в семье канторовских бесконечностей.
Я введу бесконечность большую чем ℵ0, используя историю, которую, как говорят, Давид Гильберт приводил на своих лекциях. История эта — о гостинице со счетно-бесконечным (то есть ℵ0) числом номеров. Это хорошо известное и весьма любимое математиками заведение иногда называют Гильбертовым отелем.
В Гильбертовом отеле имеется бесконечное число номеров, на дверях которых прибиты таблички 1, 2, 3, 4…. Однажды у регистрационной стойки отеля появляется путешественник и к своему разочарованию узнает, что в гостинице нет свободных мест. Он спрашивает, есть ли хоть какой-нибудь способ найти для него номер. Администратор отеля отвечает, что, конечно, есть. Все, что надо проделать, — это расселить уже имеющихся постояльцев по номерам следующим способом: того, кто жил в номере 1, — переселить в номер 2, того, кто жил в номере 2, — переселить в номер 3 и так далее, переселяя гостя из каждого номера
На следующий день возникает более сложная ситуация. Приезжает автобус, и каждому пассажиру этого автобуса нужен номер. А в автобусе бесконечное число сидений, занумерованных как 1, 2, 3 и так далее, и все они заняты. Есть ли теперь хоть какой-то способ расселить всех без исключения пассажиров? Другими словами, хотя гостиница и полна, может ли администратор так перетасовать постояльцев по номерам, чтобы в итоге освободить бесконечное число номеров для пассажиров автобуса? Да это легче легкого, говорят нам.
Все, что надо проделать на этот раз, — это переселить каждого постояльца в номер, на двери которого написано число в два раза большее, чем то, что написано на номере, где этот постоялец живет в данный момент. Тем самым заполнятся номера 2, 4, 6, 8…. А все номера, на дверях которых написано нечетное число, освободятся, и пассажирам автобуса дадут ключи от них. Пассажир, ехавший на первом сиденье, получит номер 1 (первое из нечетных чисел), пассажир, ехавший на втором сиденье, получит номер 3 (второе нечетное число) и т. д.
На третий день в Гильбертов отель прибывает много автобусов. Бесконечно много. Автобусы выстраиваются на стоянке перед гостиницей: сначала автобус 1, затем автобус 2, вслед за ним автобус 3 и т. д. В каждом автобусе — бесконечное число пассажиров (это автобусы того же типа, что приезжали накануне). И понятно, каждому пассажиру требуется номер. Есть ли способ найти для каждого пассажира из каждого автобуса номер в (уже заполненном) Гильбертовом отеле? Не проблема, отвечает администратор. Прежде всего ему надо освободить бесконечно много номеров. Он делает это тем же способом, что и накануне, — переселяет каждого постояльца в комнату с удвоенным номером. В результате свободными оказываются все нечетные номера. Все, что ему надо сделать, чтобы разместить там бесконечное число групп автобусных пассажиров, — это найти способ пересчитать всех пассажиров, потому что, как только он найдет такой способ, он поселит первого пассажира из списка в номер 1, второго — в номер 3, третьего — в номер 5 и т. д.