Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

В своих «Началах» Евклид показал, что всегда, когда сумма удвоений есть простое число, можно найти совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят. Это звучит как малопонятная тирада, так что давайте начнем складывать удвоения, чтобы увидеть, что же все это означает.

1 + 2 = 3. Число 3 простое, так что мы умножим 3 на старшее из наших удвоений, то есть на 2: 3 x 2 = 6, а число 6 совершенно.

1 + 2 + 4 = 7. Число 7 снова простое. Поэтому умножим 7 на 4, что даст еще одно совершенное число, а именно 28.

1 + 2 + 4 + 8 = 15. Это число не простое. Не появится здесь и совершенного числа.

1 + 2 + 4 + 8 + 16 = 31. Это число простое, а 31 x 16 = 496 — совершенное число.

1 + 2 + 4 + 8 +16 + 32 = 63. Это число не простое.

1 + 2 + 4 + 8 + 16 + 32 + 64 = 127. Это число также простое, а 127 x 64 = 8128 — совершенное число.

Доказательство Евклида было, конечно, геометрическим. Он не записывал его в терминах чисел, а использовал отрезки прямых. Однако если бы он мог позволить себе роскошь современных алгебраических обозначений, то заметил бы, что сумму удвоений 1 + 2 + 4 +… можно выразить как сумму степеней двойки, 2 0+ 2 1+ 2 2+… (Заметим, что любое число в степени 0 есть 1 и что любое число в степени 1 есть само это число.) Тогда становится понятным, что любая сумма удвоений равна следующему удвоению за вычетом единицы. Например:

1 + 2 = 3 = 4 - 1, или 2 0+ 2 1= 2 - 1

1 + 2 + 4 = 7 = 8–1, или 2 0+ 2 1+ 2 2= 2 3 - 1.

Это можно обобщить в виде формулы 2 0+ 2 1+ 2 2+… + 2 n-1= 2 n- 1. Другими словами, сумма первых  nудвоений равна 2 n- 1.

Итак, используя исходное заявление Евклида о том, что «когда сумма удвоений есть простое число, можно построить совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят» и добавляя к этому современные алгебраические обозначения, мы можем получить намного более четкое утверждение:

Если число 2 n- 1 простое, то число (2 n- 1) x 2 n-1совершенное.

Для цивилизаций, которые превозносили совершенные числа, данное Евклидом доказательство было потрясающей новостью. Если совершенные числа можно породить всякий раз, когда число 2 n- 1 простое, то все, что нужно для нахождения новых совершенных чисел, — это нахождение простых чисел, которые можно записать в виде 2 n- 1. Охота за совершенными числами свелась к охоте за простыми числами определенного типа.

Конечно, математический интерес к простым числам, записываемым в виде 2 n- 1, мог быть связан с совершенными числами, однако к XVII столетию простые числа стали объектом увлечения сами по себе. В то время как одни математики были поглощены вычислением числа со все большим и большим количеством десятичных знаков, другие посвящали себя нахождению все больших и больших простых чисел. Эти два рода деятельности похожи, но противоположны: если вычисление десятичных знаков в числе это поиск все меньших и меньших объектов, то погоня за простыми числами — это взлет вверх, в небеса. Развитию обоих направлений способствовала скорее романтическая аура самого путешествия, нежели возможности практического использования чисел, открытых по дороге.

В ходе этого поиска простые числа вида 2 n- 1 зажили своей собственной жизнью. Эта формула не давала простых чисел при всех значениях n,но для малых чисел процент успеха был весьма неплох. Как мы уже видели, при  n= 2, 3, 57 число 2 n- 1 — простое.

Французский монах (и одновременно один из выдающихся ученых своего времени) Марен Мерсенн (1588–1648) просто зациклился на использовании чисел вида 2 n- 1 для производства простых. В 1644 году он выступил с широкомасштабным заявлением о том, что ему известны все значения  nдо 257, при которых число 2 n- 1 простое. По его словам, это были значения

(А109 461)2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

Мерсенн был дельным математиком, однако его список — по большей части плод угадывания. Число 2 257- 1 состоит из 78 цифр — определенно слишком много для проверки человеческими силами на предмет того, простое оно или нет. Мерсенн осознавал, что его числа — это стрельба наугад. Он говорил о своем списке: «Всего времени не хватит, дабы определить, простые ли они».

Перейти на страницу:

Похожие книги