Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Дьюдени также открыл новый способ разбиения правильного треугольника на четыре куска, из которых собирается квадрат. Более того, он придумал, что если эти четыре куска соединить шарнирами, то их можно складывать одним способом в треугольник, а другим — в квадрат. Он назвал получившуюся конструкцию «Головоломкой галантерейщика», потому что формы фигур выглядели как обрезки материи в лавке галантерейщика. Эта головоломка ввела в обиход идею «шарнирного разбиения» и вызвала такой интерес, что Дьюдени изготовил ее из красного дерева с медными шарнирами и в 1905 году выступил с докладом об этой задаче на заседании Королевского математического общества в Лондоне. «Головоломка галантерейщика», жемчужина наследия Дьюдени, до сих пор вызывает восторг математиков.

Головоломка галантерейщика

* * *

Юный канадец Эрик Демейн был одним из тех, на кого «Головоломка галантерейщика» произвела неизгладимое впечатление. Он рос вункеркиндом, и к 20 годам уже стал профессором Массачусетского технологического института. Особенно Демейна заинтересовала «универсальность» проблемы. Он задался вопросом, возможно ли всякуюфигуру с прямолинейными сторонами разбить на части, а затем шарнирно соединить эти части друг с другом так, чтобы они сворачивались в любую другуюзаданную фигуру той же площади с прямолинейными сторонами. Он посвятил работе над этой задачей десять лет и в марте 2008 года (в возрасте 27 лет) объявил о полученном решении перед очень восприимчивой аудиторией — в бальном зале одной из гостиниц в Атланте, где он делал доклад, собрались истинные любители головоломок.

Демейн — высокий и тощий, с пушистой бородкой и собранными в хвост вьющимися темно-русыми волосами — вывел изображение «Головоломки галантерейщика» на большой экран за своей спиной. Он сообщил слушателям, что недавно принял решение взяться за эту задачу вместе со своими аспирантами. «Я не верил, что все это правда», — сказал он. Вопреки ожиданиям, однако, он и его ученики обнаружили, что можно преобразовать любой многоугольник в любой другой многоугольник той же площади, выполняя разбиения в духе «Головоломки галантерейщика». Аудитория зааплодировала — что не так часто случается в высших кругах вычислительной геометрии. Ведь слушатели Демейна стали свидетелями того, как была решена поистине культовая задача! И сделал это блестящий Демейн!

Та конференция в Атланте, называвшаяся «Gathering for Gardner», «Собрание для Гарднера», представляла собой собрание, где в максимальной степени были способны оценить доклад Демейна. Она проводится раз в два года, дабы отдать дань уважения человеку, который во второй половине XX столетия революционизировал занимательную математику. Мартин Гарднер, умерший совсем недавно, в 2010 году, в возрасте 95 лет, вел в 1957–1981 годах ежемесячную математическую колонку в журнале «Scientific American». То был период колоссального научного прогресса — космических полетов, новых информационных технологий, достижений в генетике, — и несмотря на это, внимание читателя неизменно привлекали написанные живым и ясным языком гарднеровские заметки. «По-моему, Гарднер проявлял уважение к веселой стороне математики, на которую редко обращают внимание в математических кругах, — сказал мне Демейн, когда я подошел к нему после его доклада. — Люди все время стараются быть уж очень серьезными. А вот моя цель — найти элемент забавы во всем, что я делаю».

Тогда в Атланте Демейн не стал объяснять подробности своего доказательства универсальности разбиений в стиле «Головоломки галантерейщика», но сказал, что разбиение одного многоугольника, позволяющее сложить из него другой, поворачивая куски на шарнирах, выглядит далеко не всегда симпатично — и часто оказывается малопригодным с практической точки зрения. Демейн сейчас занят приложением своей теоретической работы по шарнирным разбиениям к созданию роботов, которые смогут изменять свою форму, складываясь и раскладываясь, подобно героям книги комиксов и киносериала «Трансформеры», где роботы превращаются в различные машины.

* * *

Та конференция была восьмым по счету «Собранием для Гарднера», или G4G, и ее логотип, придуманный дизайнером Скоттом Кимом, представляет собой перевертыш, или амбиграмму.

После переворачивания вверх ногами она не меняется. Ким — специалист по прикладной математике, переквалифицировавшийся в изобретателя головоломок, — создал стиль симметричной каллиграфии в 1970-х годах. (Одновременно, и совершенно независимо, с художником Лэнгдоном.) Амбиграммы не обязательно должны оставаться неизменными при повороте именно на 180 градусов — подойдет любая симметрия или тайнопись. Математики питают особую любовь к записям такого типа, поскольку они перекликаются с их собственными поисками скрытых структур и симметрий.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное