Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Похожую систему использовали и древние греки — у них альфа обозначала единицу, бета  — двойку и т. д. до 27-й буквы имевшегося в их распоряжении алфавита, сампи , которая обозначала число 900. Греческой математической культуре — самой развитой в Древнем мире — не была свойственна жажда индусов к овладению колоссальными числами. Названием для самого большого из чисел, имевшихся в распоряжении древних греков, было слово «мириада», означавшее десять тысяч, что записывалось как заглавная буква М.

В основе римских числительных также лежал алфавит, хотя римская система имела более древние корни, чем даже греческая или еврейская. Символ для единицы выглядел как I — возможно, происходил он из засечки на счетной палочке. Пять обозначалось как V — возможно, из-за схожести с тем, как выглядит рука. Другие числа выглядели как X, L, С, D, M и соответственно обозначали 10, 50, 100, 500, 1000. Все остальные числа строились с использованием этих семи заглавных букв. Использование всего лишь семи символов в сравнении с 22 из иврита и 27 из греческого алфавита делало римскую систему более удобной, вот почему она оставалась основной числовой системой в Европе на протяжении более тысячи лет.

Тем не менее римские числительные очень плохо приспособлены к нуждам арифметики. Давайте попробуем вычислить 57 x 43. Лучшим способом решить эту задачу является хитроумный, но медленный метод, получивший название египетского или крестьянского умножения, поскольку возник он в Древнем Египте.

Для начала разложим одно из чисел, подлежащих умножению, по степеням двойки (эти степени, напомним, равны 1, 2, 4, 8, 16, 32 и т. д., где каждый раз происходит удвоение), а затем составим таблицу удвоений другого числа. В нашем примере — (57 x 43) — надо разложить число 57 и выписать таблицу удвоений числа 43. Я буду использовать арабские числительные, чтобы продемонстрировать, как это делается, но процесс остается тем же самым и при использовании римских числительных.

Разложение: 57 = 32 +16 + 8 +1.

Таблица удвоений:

1 x 43 = 43

2 x 43 = 86

4 x 43 = 172

8 x 43 = 344

16 x 43 = 688

32 x 43 = 1376

Умножение 57 x 43 эквивалентно сложению результатов из правого столбца в таблице удвоений, которые отвечают степеням двойки в разложении. Это, возможно, звучит не слишком понятно, но в действительности оказывается не так уж сложно. Наше разложение содержит в себе числа 32, 16, 8 и 1. В таблице 32 отвечает числу 1376, 16 — числу 688, 8 — числу 344, а 1 — числу 43. Таким образом, результат нашего умножения равен 1376 + 688 + 344 + 43, что дает 2451.

Если разбивать вычисления на удобоваримые кусочки, сводящиеся только к удвоению и сложению, то римские числительные оказываются вещью вполне пригодной. И тем не менее нам пришлось выполнить работы куда больше, чем это на самом деле нужно.

Сравним приведенное вычисление с умножением столбиком, которое все мы изучали:

Имеется очень простая причина, по которой наш метод и проще, и быстрее. Дело в том, что ни римляне, ни греки, ни евреи не изобрели символа для нуля. А когда дело доходит до вычислений, то именно 0, то есть ничто, становится невероятно важным и меняет все кардинальным образом.

* * *

Веды, священные индуистские тексты, передавались из поколения в поколение из уст в уста, пока наконец их не перевели на санскрит около двух тысяч лет назад. В одном ведическом пассаже о построении алтарей перечисляются следующие слова, обозначающие числа:

Даса10Арбуда10 000 000
Сата100Ньярбуда100 000 000
Сахастра1000Самудра1 000 000 000
Аюта10 000Мадхья10 000 000 000
Ньюта100 000Анта100 000 000 000
Праюта1 000 000Парардха1 000 000 000 000

При наличии названий для каждого числа, кратного десяти, удается эффективно описать большие числа, из чего астрономы и астрологи (и, надо полагать, строители алтарей) почерпнули подходящий к своим задачам лексикон для огромных величин, требуемых в их вычислениях. В этом одна из причин, по которым индийская астрономия опережала свое время. Возьмем число 422 396. Индусы начинали с самой младшей цифры — той, что справа, — и последовательно описывали число, переходя справа налево: «шесть и девять дасы и три сахастры и две аюты и две ньюты и четыре праюты». Не так уж сложно осознать, что при этом можно не указывать степени десятки, потому что значение числа в списке определяется его положением. Другими словами, приведенное выше число можно было бы записать и просто как «шесть, девять, три, два, два, четыре».

Перейти на страницу:

Похожие книги